This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmd.b | |- B = ( Base ` M ) |
|
| issubmd.p | |- .+ = ( +g ` M ) |
||
| issubmd.z | |- .0. = ( 0g ` M ) |
||
| issubmd.m | |- ( ph -> M e. Mnd ) |
||
| issubmd.cz | |- ( ph -> ch ) |
||
| issubmd.cp | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( th /\ ta ) ) ) -> et ) |
||
| issubmd.ch | |- ( z = .0. -> ( ps <-> ch ) ) |
||
| issubmd.th | |- ( z = x -> ( ps <-> th ) ) |
||
| issubmd.ta | |- ( z = y -> ( ps <-> ta ) ) |
||
| issubmd.et | |- ( z = ( x .+ y ) -> ( ps <-> et ) ) |
||
| Assertion | issubmd | |- ( ph -> { z e. B | ps } e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmd.b | |- B = ( Base ` M ) |
|
| 2 | issubmd.p | |- .+ = ( +g ` M ) |
|
| 3 | issubmd.z | |- .0. = ( 0g ` M ) |
|
| 4 | issubmd.m | |- ( ph -> M e. Mnd ) |
|
| 5 | issubmd.cz | |- ( ph -> ch ) |
|
| 6 | issubmd.cp | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( th /\ ta ) ) ) -> et ) |
|
| 7 | issubmd.ch | |- ( z = .0. -> ( ps <-> ch ) ) |
|
| 8 | issubmd.th | |- ( z = x -> ( ps <-> th ) ) |
|
| 9 | issubmd.ta | |- ( z = y -> ( ps <-> ta ) ) |
|
| 10 | issubmd.et | |- ( z = ( x .+ y ) -> ( ps <-> et ) ) |
|
| 11 | ssrab2 | |- { z e. B | ps } C_ B |
|
| 12 | 11 | a1i | |- ( ph -> { z e. B | ps } C_ B ) |
| 13 | 1 3 | mndidcl | |- ( M e. Mnd -> .0. e. B ) |
| 14 | 4 13 | syl | |- ( ph -> .0. e. B ) |
| 15 | 7 14 5 | elrabd | |- ( ph -> .0. e. { z e. B | ps } ) |
| 16 | 8 | elrab | |- ( x e. { z e. B | ps } <-> ( x e. B /\ th ) ) |
| 17 | 9 | elrab | |- ( y e. { z e. B | ps } <-> ( y e. B /\ ta ) ) |
| 18 | 16 17 | anbi12i | |- ( ( x e. { z e. B | ps } /\ y e. { z e. B | ps } ) <-> ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) |
| 19 | 4 | adantr | |- ( ( ph /\ ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) -> M e. Mnd ) |
| 20 | simprll | |- ( ( ph /\ ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) -> x e. B ) |
|
| 21 | simprrl | |- ( ( ph /\ ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) -> y e. B ) |
|
| 22 | 1 2 | mndcl | |- ( ( M e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 23 | 19 20 21 22 | syl3anc | |- ( ( ph /\ ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) -> ( x .+ y ) e. B ) |
| 24 | an4 | |- ( ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) <-> ( ( x e. B /\ y e. B ) /\ ( th /\ ta ) ) ) |
|
| 25 | 24 6 | sylan2b | |- ( ( ph /\ ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) -> et ) |
| 26 | 10 23 25 | elrabd | |- ( ( ph /\ ( ( x e. B /\ th ) /\ ( y e. B /\ ta ) ) ) -> ( x .+ y ) e. { z e. B | ps } ) |
| 27 | 18 26 | sylan2b | |- ( ( ph /\ ( x e. { z e. B | ps } /\ y e. { z e. B | ps } ) ) -> ( x .+ y ) e. { z e. B | ps } ) |
| 28 | 27 | ralrimivva | |- ( ph -> A. x e. { z e. B | ps } A. y e. { z e. B | ps } ( x .+ y ) e. { z e. B | ps } ) |
| 29 | 1 3 2 | issubm | |- ( M e. Mnd -> ( { z e. B | ps } e. ( SubMnd ` M ) <-> ( { z e. B | ps } C_ B /\ .0. e. { z e. B | ps } /\ A. x e. { z e. B | ps } A. y e. { z e. B | ps } ( x .+ y ) e. { z e. B | ps } ) ) ) |
| 30 | 4 29 | syl | |- ( ph -> ( { z e. B | ps } e. ( SubMnd ` M ) <-> ( { z e. B | ps } C_ B /\ .0. e. { z e. B | ps } /\ A. x e. { z e. B | ps } A. y e. { z e. B | ps } ( x .+ y ) e. { z e. B | ps } ) ) ) |
| 31 | 12 15 28 30 | mpbir3and | |- ( ph -> { z e. B | ps } e. ( SubMnd ` M ) ) |