This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that an element I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgidm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgidm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| srgidm.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | issrgid | ⊢ ( 𝑅 ∈ SRing → ( ( 𝐼 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝐼 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝐼 ) = 𝑥 ) ) ↔ 1 = 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgidm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgidm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | srgidm.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | 4 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 6 | 4 3 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 7 | 4 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 | 1 2 | srgideu | ⊢ ( 𝑅 ∈ SRing → ∃! 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) ) |
| 9 | reurex | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑅 ∈ SRing → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) ) |
| 11 | 5 6 7 10 | ismgmid | ⊢ ( 𝑅 ∈ SRing → ( ( 𝐼 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝐼 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝐼 ) = 𝑥 ) ) ↔ 1 = 𝐼 ) ) |