This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Rings
Semirings
issrgid
Metamath Proof Explorer
Description: Properties showing that an element I is the unity element of a
semiring. (Contributed by NM , 7-Aug-2013) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
srgidm.b
⊢ B = Base R
srgidm.t
⊢ · ˙ = ⋅ R
srgidm.u
⊢ 1 ˙ = 1 R
Assertion
issrgid
⊢ R ∈ SRing → I ∈ B ∧ ∀ x ∈ B I · ˙ x = x ∧ x · ˙ I = x ↔ 1 ˙ = I
Proof
Step
Hyp
Ref
Expression
1
srgidm.b
⊢ B = Base R
2
srgidm.t
⊢ · ˙ = ⋅ R
3
srgidm.u
⊢ 1 ˙ = 1 R
4
eqid
⊢ mulGrp R = mulGrp R
5
4 1
mgpbas
⊢ B = Base mulGrp R
6
4 3
ringidval
⊢ 1 ˙ = 0 mulGrp R
7
4 2
mgpplusg
⊢ · ˙ = + mulGrp R
8
1 2
srgideu
⊢ R ∈ SRing → ∃! y ∈ B ∀ x ∈ B y · ˙ x = x ∧ x · ˙ y = x
9
reurex
⊢ ∃! y ∈ B ∀ x ∈ B y · ˙ x = x ∧ x · ˙ y = x → ∃ y ∈ B ∀ x ∈ B y · ˙ x = x ∧ x · ˙ y = x
10
8 9
syl
⊢ R ∈ SRing → ∃ y ∈ B ∀ x ∈ B y · ˙ x = x ∧ x · ˙ y = x
11
5 6 7 10
ismgmid
⊢ R ∈ SRing → I ∈ B ∧ ∀ x ∈ B I · ˙ x = x ∧ x · ˙ I = x ↔ 1 ˙ = I