This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that an element I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgidm.b | |- B = ( Base ` R ) |
|
| srgidm.t | |- .x. = ( .r ` R ) |
||
| srgidm.u | |- .1. = ( 1r ` R ) |
||
| Assertion | issrgid | |- ( R e. SRing -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgidm.b | |- B = ( Base ` R ) |
|
| 2 | srgidm.t | |- .x. = ( .r ` R ) |
|
| 3 | srgidm.u | |- .1. = ( 1r ` R ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | 4 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 6 | 4 3 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 7 | 4 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 8 | 1 2 | srgideu | |- ( R e. SRing -> E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) |
| 9 | reurex | |- ( E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) |
|
| 10 | 8 9 | syl | |- ( R e. SRing -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) |
| 11 | 5 6 7 10 | ismgmid | |- ( R e. SRing -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) ) |