This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a (unital) ring." Definition of "ring with unit" in Schechter p. 187. (Contributed by Jeff Hankins, 21-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isring.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | isrngo | ⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isring.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | df-br | ⊢ ( 𝐺 RingOps 𝐻 ↔ 〈 𝐺 , 𝐻 〉 ∈ RingOps ) | |
| 3 | relrngo | ⊢ Rel RingOps | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐺 RingOps 𝐻 → 𝐺 ∈ V ) |
| 5 | 2 4 | sylbir | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ V ) |
| 6 | 5 | a1i | ⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ V ) ) |
| 7 | elex | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ V ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) → 𝐺 ∈ V ) |
| 9 | 8 | a1i | ⊢ ( 𝐻 ∈ 𝐴 → ( ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) → 𝐺 ∈ V ) ) |
| 10 | df-rngo | ⊢ RingOps = { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } | |
| 11 | 10 | eleq2i | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } ) |
| 12 | simpl | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑔 = 𝐺 ) | |
| 13 | 12 | eleq1d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp ) ) |
| 14 | simpr | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) | |
| 15 | 12 | rneqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ran 𝑔 = ran 𝐺 ) |
| 16 | 15 1 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ran 𝑔 = 𝑋 ) |
| 17 | 16 | sqxpeqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ran 𝑔 × ran 𝑔 ) = ( 𝑋 × 𝑋 ) ) |
| 18 | 14 17 16 | feq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ↔ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
| 19 | 13 18 | anbi12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ↔ ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) ) |
| 20 | 14 | oveqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 21 | eqidd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑧 = 𝑧 ) | |
| 22 | 14 20 21 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) ) |
| 23 | eqidd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑥 = 𝑥 ) | |
| 24 | 14 | oveqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 25 | 14 23 24 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) |
| 26 | 22 25 | eqeq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ↔ ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 27 | 12 | oveqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) |
| 28 | 14 23 27 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
| 29 | 14 | oveqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑧 ) = ( 𝑥 𝐻 𝑧 ) ) |
| 30 | 12 20 29 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
| 31 | 28 30 | eqeq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ↔ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 32 | 12 | oveqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 33 | 14 32 21 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) ) |
| 34 | 12 29 24 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 35 | 33 34 | eqeq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 36 | 26 31 35 | 3anbi123d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 37 | 16 36 | raleqbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 38 | 16 37 | raleqbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 39 | 16 38 | raleqbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 40 | 20 | eqeq1d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) = 𝑦 ) ) |
| 41 | 14 | oveqd | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 42 | 41 | eqeq1d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑦 ℎ 𝑥 ) = 𝑦 ↔ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) |
| 43 | 40 42 | anbi12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
| 44 | 16 43 | raleqbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
| 45 | 16 44 | rexeqbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
| 46 | 39 45 | anbi12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
| 47 | 19 46 | anbi12d | ⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
| 48 | 47 | opelopabga | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
| 49 | 11 48 | bitrid | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
| 50 | 49 | expcom | ⊢ ( 𝐻 ∈ 𝐴 → ( 𝐺 ∈ V → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) ) |
| 51 | 6 9 50 | pm5.21ndd | ⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |