This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rngo | ⊢ RingOps = { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crngo | ⊢ RingOps | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | vh | ⊢ ℎ | |
| 3 | 1 | cv | ⊢ 𝑔 |
| 4 | cablo | ⊢ AbelOp | |
| 5 | 3 4 | wcel | ⊢ 𝑔 ∈ AbelOp |
| 6 | 2 | cv | ⊢ ℎ |
| 7 | 3 | crn | ⊢ ran 𝑔 |
| 8 | 7 7 | cxp | ⊢ ( ran 𝑔 × ran 𝑔 ) |
| 9 | 8 7 6 | wf | ⊢ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 |
| 10 | 5 9 | wa | ⊢ ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) |
| 11 | vx | ⊢ 𝑥 | |
| 12 | vy | ⊢ 𝑦 | |
| 13 | vz | ⊢ 𝑧 | |
| 14 | 11 | cv | ⊢ 𝑥 |
| 15 | 12 | cv | ⊢ 𝑦 |
| 16 | 14 15 6 | co | ⊢ ( 𝑥 ℎ 𝑦 ) |
| 17 | 13 | cv | ⊢ 𝑧 |
| 18 | 16 17 6 | co | ⊢ ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) |
| 19 | 15 17 6 | co | ⊢ ( 𝑦 ℎ 𝑧 ) |
| 20 | 14 19 6 | co | ⊢ ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) |
| 21 | 18 20 | wceq | ⊢ ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) |
| 22 | 15 17 3 | co | ⊢ ( 𝑦 𝑔 𝑧 ) |
| 23 | 14 22 6 | co | ⊢ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) |
| 24 | 14 17 6 | co | ⊢ ( 𝑥 ℎ 𝑧 ) |
| 25 | 16 24 3 | co | ⊢ ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) |
| 26 | 23 25 | wceq | ⊢ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) |
| 27 | 14 15 3 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 28 | 27 17 6 | co | ⊢ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) |
| 29 | 24 19 3 | co | ⊢ ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) |
| 30 | 28 29 | wceq | ⊢ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) |
| 31 | 21 26 30 | w3a | ⊢ ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 32 | 31 13 7 | wral | ⊢ ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 33 | 32 12 7 | wral | ⊢ ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 34 | 33 11 7 | wral | ⊢ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 35 | 16 15 | wceq | ⊢ ( 𝑥 ℎ 𝑦 ) = 𝑦 |
| 36 | 15 14 6 | co | ⊢ ( 𝑦 ℎ 𝑥 ) |
| 37 | 36 15 | wceq | ⊢ ( 𝑦 ℎ 𝑥 ) = 𝑦 |
| 38 | 35 37 | wa | ⊢ ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) |
| 39 | 38 12 7 | wral | ⊢ ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) |
| 40 | 39 11 7 | wrex | ⊢ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) |
| 41 | 34 40 | wa | ⊢ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) |
| 42 | 10 41 | wa | ⊢ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) |
| 43 | 42 1 2 | copab | ⊢ { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } |
| 44 | 0 43 | wceq | ⊢ RingOps = { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } |