This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in BourbakiAlg1 p. 92 or definition of a ring with identity in part Preliminaries of Roman p. 19. So that the additive structure must be abelian (see ringcom ), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. Therefore, it can be shown that a unital ring is a non-unital ring ( ringrng ) only after ringabl was proven. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ring | ⊢ Ring = { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crg | ⊢ Ring | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | cmgp | ⊢ mulGrp | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | 4 3 | cfv | ⊢ ( mulGrp ‘ 𝑓 ) |
| 6 | cmnd | ⊢ Mnd | |
| 7 | 5 6 | wcel | ⊢ ( mulGrp ‘ 𝑓 ) ∈ Mnd |
| 8 | cbs | ⊢ Base | |
| 9 | 4 8 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 10 | vr | ⊢ 𝑟 | |
| 11 | cplusg | ⊢ +g | |
| 12 | 4 11 | cfv | ⊢ ( +g ‘ 𝑓 ) |
| 13 | vp | ⊢ 𝑝 | |
| 14 | cmulr | ⊢ .r | |
| 15 | 4 14 | cfv | ⊢ ( .r ‘ 𝑓 ) |
| 16 | vt | ⊢ 𝑡 | |
| 17 | vx | ⊢ 𝑥 | |
| 18 | 10 | cv | ⊢ 𝑟 |
| 19 | vy | ⊢ 𝑦 | |
| 20 | vz | ⊢ 𝑧 | |
| 21 | 17 | cv | ⊢ 𝑥 |
| 22 | 16 | cv | ⊢ 𝑡 |
| 23 | 19 | cv | ⊢ 𝑦 |
| 24 | 13 | cv | ⊢ 𝑝 |
| 25 | 20 | cv | ⊢ 𝑧 |
| 26 | 23 25 24 | co | ⊢ ( 𝑦 𝑝 𝑧 ) |
| 27 | 21 26 22 | co | ⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) |
| 28 | 21 23 22 | co | ⊢ ( 𝑥 𝑡 𝑦 ) |
| 29 | 21 25 22 | co | ⊢ ( 𝑥 𝑡 𝑧 ) |
| 30 | 28 29 24 | co | ⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
| 31 | 27 30 | wceq | ⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
| 32 | 21 23 24 | co | ⊢ ( 𝑥 𝑝 𝑦 ) |
| 33 | 32 25 22 | co | ⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) |
| 34 | 23 25 22 | co | ⊢ ( 𝑦 𝑡 𝑧 ) |
| 35 | 29 34 24 | co | ⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
| 36 | 33 35 | wceq | ⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
| 37 | 31 36 | wa | ⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 38 | 37 20 18 | wral | ⊢ ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 39 | 38 19 18 | wral | ⊢ ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 40 | 39 17 18 | wral | ⊢ ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 41 | 40 16 15 | wsbc | ⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 42 | 41 13 12 | wsbc | ⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 43 | 42 10 9 | wsbc | ⊢ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 44 | 7 43 | wa | ⊢ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) |
| 45 | 44 1 2 | crab | ⊢ { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |
| 46 | 0 45 | wceq | ⊢ Ring = { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |