This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| Assertion | psubspi | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) → 𝑃 ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | ispsubsp2 | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |
| 6 | 5 | simplbda | ⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 7 | 6 | ex | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) |
| 8 | breq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) ) | |
| 9 | 8 | 2rexbidv | ⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ 𝑋 ↔ 𝑃 ∈ 𝑋 ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝑝 = 𝑃 → ( ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑃 ∈ 𝑋 ) ) ) |
| 12 | 11 | rspccv | ⊢ ( ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) → ( 𝑃 ∈ 𝐴 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑃 ∈ 𝑋 ) ) ) |
| 13 | 7 12 | syl6 | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 → ( 𝑃 ∈ 𝐴 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑃 ∈ 𝑋 ) ) ) ) |
| 14 | 13 | 3imp1 | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) → 𝑃 ∈ 𝑋 ) |