This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isprm2 . (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm2lem | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o <-> { n e. NN | n || P } = { 1 , P } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> P =/= 1 ) |
|
| 2 | 1 | necomd | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> 1 =/= P ) |
| 3 | simpr | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> { n e. NN | n || P } ~~ 2o ) |
|
| 4 | nnz | |- ( P e. NN -> P e. ZZ ) |
|
| 5 | 1dvds | |- ( P e. ZZ -> 1 || P ) |
|
| 6 | 4 5 | syl | |- ( P e. NN -> 1 || P ) |
| 7 | 6 | ad2antrr | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> 1 || P ) |
| 8 | 1nn | |- 1 e. NN |
|
| 9 | breq1 | |- ( n = 1 -> ( n || P <-> 1 || P ) ) |
|
| 10 | 9 | elrab3 | |- ( 1 e. NN -> ( 1 e. { n e. NN | n || P } <-> 1 || P ) ) |
| 11 | 8 10 | ax-mp | |- ( 1 e. { n e. NN | n || P } <-> 1 || P ) |
| 12 | 7 11 | sylibr | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> 1 e. { n e. NN | n || P } ) |
| 13 | iddvds | |- ( P e. ZZ -> P || P ) |
|
| 14 | 4 13 | syl | |- ( P e. NN -> P || P ) |
| 15 | 14 | ad2antrr | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> P || P ) |
| 16 | breq1 | |- ( n = P -> ( n || P <-> P || P ) ) |
|
| 17 | 16 | elrab3 | |- ( P e. NN -> ( P e. { n e. NN | n || P } <-> P || P ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> ( P e. { n e. NN | n || P } <-> P || P ) ) |
| 19 | 15 18 | mpbird | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> P e. { n e. NN | n || P } ) |
| 20 | en2eqpr | |- ( ( { n e. NN | n || P } ~~ 2o /\ 1 e. { n e. NN | n || P } /\ P e. { n e. NN | n || P } ) -> ( 1 =/= P -> { n e. NN | n || P } = { 1 , P } ) ) |
|
| 21 | 3 12 19 20 | syl3anc | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> ( 1 =/= P -> { n e. NN | n || P } = { 1 , P } ) ) |
| 22 | 2 21 | mpd | |- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> { n e. NN | n || P } = { 1 , P } ) |
| 23 | 22 | ex | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o -> { n e. NN | n || P } = { 1 , P } ) ) |
| 24 | necom | |- ( 1 =/= P <-> P =/= 1 ) |
|
| 25 | pr2ne | |- ( ( 1 e. NN /\ P e. NN ) -> ( { 1 , P } ~~ 2o <-> 1 =/= P ) ) |
|
| 26 | 8 25 | mpan | |- ( P e. NN -> ( { 1 , P } ~~ 2o <-> 1 =/= P ) ) |
| 27 | 26 | biimpar | |- ( ( P e. NN /\ 1 =/= P ) -> { 1 , P } ~~ 2o ) |
| 28 | 24 27 | sylan2br | |- ( ( P e. NN /\ P =/= 1 ) -> { 1 , P } ~~ 2o ) |
| 29 | breq1 | |- ( { n e. NN | n || P } = { 1 , P } -> ( { n e. NN | n || P } ~~ 2o <-> { 1 , P } ~~ 2o ) ) |
|
| 30 | 28 29 | syl5ibrcom | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } = { 1 , P } -> { n e. NN | n || P } ~~ 2o ) ) |
| 31 | 23 30 | impbid | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o <-> { n e. NN | n || P } = { 1 , P } ) ) |