This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isphl.v | |- V = ( Base ` W ) |
|
| isphl.f | |- F = ( Scalar ` W ) |
||
| isphl.h | |- ., = ( .i ` W ) |
||
| isphl.o | |- .0. = ( 0g ` W ) |
||
| isphl.i | |- .* = ( *r ` F ) |
||
| isphl.z | |- Z = ( 0g ` F ) |
||
| Assertion | isphl | |- ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphl.v | |- V = ( Base ` W ) |
|
| 2 | isphl.f | |- F = ( Scalar ` W ) |
|
| 3 | isphl.h | |- ., = ( .i ` W ) |
|
| 4 | isphl.o | |- .0. = ( 0g ` W ) |
|
| 5 | isphl.i | |- .* = ( *r ` F ) |
|
| 6 | isphl.z | |- Z = ( 0g ` F ) |
|
| 7 | fvexd | |- ( g = W -> ( Base ` g ) e. _V ) |
|
| 8 | fvexd | |- ( ( g = W /\ v = ( Base ` g ) ) -> ( .i ` g ) e. _V ) |
|
| 9 | fvexd | |- ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( Scalar ` g ) e. _V ) |
|
| 10 | id | |- ( f = ( Scalar ` g ) -> f = ( Scalar ` g ) ) |
|
| 11 | simpll | |- ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> g = W ) |
|
| 12 | 11 | fveq2d | |- ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( Scalar ` g ) = ( Scalar ` W ) ) |
| 13 | 12 2 | eqtr4di | |- ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( Scalar ` g ) = F ) |
| 14 | 10 13 | sylan9eqr | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> f = F ) |
| 15 | 14 | eleq1d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( f e. *Ring <-> F e. *Ring ) ) |
| 16 | simpllr | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> v = ( Base ` g ) ) |
|
| 17 | simplll | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> g = W ) |
|
| 18 | 17 | fveq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( Base ` g ) = ( Base ` W ) ) |
| 19 | 18 1 | eqtr4di | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( Base ` g ) = V ) |
| 20 | 16 19 | eqtrd | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> v = V ) |
| 21 | simplr | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> h = ( .i ` g ) ) |
|
| 22 | 17 | fveq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( .i ` g ) = ( .i ` W ) ) |
| 23 | 22 3 | eqtr4di | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( .i ` g ) = ., ) |
| 24 | 21 23 | eqtrd | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> h = ., ) |
| 25 | 24 | oveqd | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( y h x ) = ( y ., x ) ) |
| 26 | 20 25 | mpteq12dv | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( y e. v |-> ( y h x ) ) = ( y e. V |-> ( y ., x ) ) ) |
| 27 | 14 | fveq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ringLMod ` f ) = ( ringLMod ` F ) ) |
| 28 | 17 27 | oveq12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( g LMHom ( ringLMod ` f ) ) = ( W LMHom ( ringLMod ` F ) ) ) |
| 29 | 26 28 | eleq12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) <-> ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) ) ) |
| 30 | 24 | oveqd | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( x h x ) = ( x ., x ) ) |
| 31 | 14 | fveq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` f ) = ( 0g ` F ) ) |
| 32 | 31 6 | eqtr4di | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` f ) = Z ) |
| 33 | 30 32 | eqeq12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( x h x ) = ( 0g ` f ) <-> ( x ., x ) = Z ) ) |
| 34 | 17 | fveq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` g ) = ( 0g ` W ) ) |
| 35 | 34 4 | eqtr4di | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` g ) = .0. ) |
| 36 | 35 | eqeq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( x = ( 0g ` g ) <-> x = .0. ) ) |
| 37 | 33 36 | imbi12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) <-> ( ( x ., x ) = Z -> x = .0. ) ) ) |
| 38 | 14 | fveq2d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( *r ` f ) = ( *r ` F ) ) |
| 39 | 38 5 | eqtr4di | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( *r ` f ) = .* ) |
| 40 | 24 | oveqd | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( x h y ) = ( x ., y ) ) |
| 41 | 39 40 | fveq12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( *r ` f ) ` ( x h y ) ) = ( .* ` ( x ., y ) ) ) |
| 42 | 41 25 | eqeq12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) <-> ( .* ` ( x ., y ) ) = ( y ., x ) ) ) |
| 43 | 20 42 | raleqbidv | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) <-> A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) |
| 44 | 29 37 43 | 3anbi123d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) <-> ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) |
| 45 | 20 44 | raleqbidv | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) <-> A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) |
| 46 | 15 45 | anbi12d | |- ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) |
| 47 | 9 46 | sbcied | |- ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) |
| 48 | 8 47 | sbcied | |- ( ( g = W /\ v = ( Base ` g ) ) -> ( [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) |
| 49 | 7 48 | sbcied | |- ( g = W -> ( [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) |
| 50 | df-phl | |- PreHil = { g e. LVec | [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) } |
|
| 51 | 49 50 | elrab2 | |- ( W e. PreHil <-> ( W e. LVec /\ ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) |
| 52 | 3anass | |- ( ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) <-> ( W e. LVec /\ ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) |
|
| 53 | 51 52 | bitr4i | |- ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) |