This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-phl | ⊢ PreHil = { 𝑔 ∈ LVec ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cphl | ⊢ PreHil | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | clvec | ⊢ LVec | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 6 | vv | ⊢ 𝑣 | |
| 7 | cip | ⊢ ·𝑖 | |
| 8 | 4 7 | cfv | ⊢ ( ·𝑖 ‘ 𝑔 ) |
| 9 | vh | ⊢ ℎ | |
| 10 | csca | ⊢ Scalar | |
| 11 | 4 10 | cfv | ⊢ ( Scalar ‘ 𝑔 ) |
| 12 | vf | ⊢ 𝑓 | |
| 13 | 12 | cv | ⊢ 𝑓 |
| 14 | csr | ⊢ *-Ring | |
| 15 | 13 14 | wcel | ⊢ 𝑓 ∈ *-Ring |
| 16 | vx | ⊢ 𝑥 | |
| 17 | 6 | cv | ⊢ 𝑣 |
| 18 | vy | ⊢ 𝑦 | |
| 19 | 18 | cv | ⊢ 𝑦 |
| 20 | 9 | cv | ⊢ ℎ |
| 21 | 16 | cv | ⊢ 𝑥 |
| 22 | 19 21 20 | co | ⊢ ( 𝑦 ℎ 𝑥 ) |
| 23 | 18 17 22 | cmpt | ⊢ ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) |
| 24 | clmhm | ⊢ LMHom | |
| 25 | crglmod | ⊢ ringLMod | |
| 26 | 13 25 | cfv | ⊢ ( ringLMod ‘ 𝑓 ) |
| 27 | 4 26 24 | co | ⊢ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) |
| 28 | 23 27 | wcel | ⊢ ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) |
| 29 | 21 21 20 | co | ⊢ ( 𝑥 ℎ 𝑥 ) |
| 30 | c0g | ⊢ 0g | |
| 31 | 13 30 | cfv | ⊢ ( 0g ‘ 𝑓 ) |
| 32 | 29 31 | wceq | ⊢ ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) |
| 33 | 4 30 | cfv | ⊢ ( 0g ‘ 𝑔 ) |
| 34 | 21 33 | wceq | ⊢ 𝑥 = ( 0g ‘ 𝑔 ) |
| 35 | 32 34 | wi | ⊢ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) |
| 36 | cstv | ⊢ *𝑟 | |
| 37 | 13 36 | cfv | ⊢ ( *𝑟 ‘ 𝑓 ) |
| 38 | 21 19 20 | co | ⊢ ( 𝑥 ℎ 𝑦 ) |
| 39 | 38 37 | cfv | ⊢ ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) |
| 40 | 39 22 | wceq | ⊢ ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) |
| 41 | 40 18 17 | wral | ⊢ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) |
| 42 | 28 35 41 | w3a | ⊢ ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) |
| 43 | 42 16 17 | wral | ⊢ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) |
| 44 | 15 43 | wa | ⊢ ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) |
| 45 | 44 12 11 | wsbc | ⊢ [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) |
| 46 | 45 9 8 | wsbc | ⊢ [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) |
| 47 | 46 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) |
| 48 | 47 1 2 | crab | ⊢ { 𝑔 ∈ LVec ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) } |
| 49 | 0 48 | wceq | ⊢ PreHil = { 𝑔 ∈ LVec ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) } |