This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isoso . (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isosolem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopolem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Po 𝐵 → 𝑅 Po 𝐴 ) ) | |
| 2 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 4 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ) | |
| 5 | 4 | ex | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑐 ∈ 𝐴 → ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ) ) |
| 6 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑑 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) | |
| 7 | 6 | ex | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑑 ∈ 𝐴 → ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) |
| 8 | 5 7 | anim12d | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) ) |
| 9 | 2 3 8 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) |
| 11 | breq1 | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( 𝑎 𝑆 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ) ) | |
| 12 | eqeq1 | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( 𝑎 = 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) = 𝑏 ) ) | |
| 13 | breq2 | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( 𝑏 𝑆 𝑎 ↔ 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | |
| 14 | 11 12 13 | 3orbi123d | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ↔ ( ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ∨ ( 𝐻 ‘ 𝑐 ) = 𝑏 ∨ 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 15 | breq2 | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) | |
| 16 | eqeq2 | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( ( 𝐻 ‘ 𝑐 ) = 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ) ) | |
| 17 | breq1 | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | |
| 18 | 15 16 17 | 3orbi123d | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( ( ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ∨ ( 𝐻 ‘ 𝑐 ) = 𝑏 ∨ 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ) ↔ ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 19 | 14 18 | rspc2v | ⊢ ( ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 20 | 10 19 | syl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 21 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑐 𝑅 𝑑 ↔ ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) | |
| 22 | f1of1 | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –1-1→ 𝐵 ) | |
| 23 | 2 22 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
| 24 | f1fveq | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) | |
| 25 | 23 24 | sylan | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) |
| 26 | 25 | bicomd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑐 = 𝑑 ↔ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ) ) |
| 27 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑐 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | |
| 28 | 27 | ancom2s | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑐 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
| 29 | 21 26 28 | 3orbi123d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ↔ ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 30 | 20 29 | sylibrd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) |
| 31 | 30 | ralrimdvva | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) |
| 32 | 1 31 | anim12d | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑆 Po 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) → ( 𝑅 Po 𝐴 ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) ) |
| 33 | df-so | ⊢ ( 𝑆 Or 𝐵 ↔ ( 𝑆 Po 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) ) | |
| 34 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) | |
| 35 | 32 33 34 | 3imtr4g | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) |