This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invffval.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | invffval | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invffval.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = ( Sect ‘ 𝐶 ) ) | |
| 8 | 7 4 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = 𝑆 ) |
| 9 | 8 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝑆 𝑦 ) ) |
| 10 | 8 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ( 𝑦 𝑆 𝑥 ) ) |
| 11 | 10 | cnveqd | ⊢ ( 𝑐 = 𝐶 → ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ◡ ( 𝑦 𝑆 𝑥 ) ) |
| 12 | 9 11 | ineq12d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) = ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) |
| 13 | 6 6 12 | mpoeq123dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
| 14 | df-inv | ⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) ) | |
| 15 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | 15 15 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ∈ V |
| 17 | 13 14 16 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( Inv ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
| 19 | 2 18 | eqtrid | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |