This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isose | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | f1ofun | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐻 ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | funimaex | ⊢ ( Fun 𝐻 → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 6 | 2 3 5 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 7 | 1 6 | isoselem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐵 ) ) |
| 8 | isocnv | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 9 | isof1o | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 10 | f1ofun | ⊢ ( ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 → Fun ◡ 𝐻 ) | |
| 11 | 4 | funimaex | ⊢ ( Fun ◡ 𝐻 → ( ◡ 𝐻 “ 𝑥 ) ∈ V ) |
| 12 | 8 9 10 11 | 4syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ◡ 𝐻 “ 𝑥 ) ∈ V ) |
| 13 | 8 12 | isoselem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Se 𝐵 → 𝑅 Se 𝐴 ) ) |
| 14 | 7 13 | impbid | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵 ) ) |