This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isopo . (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isopolem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Po 𝐵 → 𝑅 Po 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 3 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑑 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) | |
| 4 | 3 | ex | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑑 ∈ 𝐴 → ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) |
| 5 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑒 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑒 ) ∈ 𝐵 ) | |
| 6 | 5 | ex | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑒 ∈ 𝐴 → ( 𝐻 ‘ 𝑒 ) ∈ 𝐵 ) ) |
| 7 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑓 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑓 ) ∈ 𝐵 ) | |
| 8 | 7 | ex | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑓 ∈ 𝐴 → ( 𝐻 ‘ 𝑓 ) ∈ 𝐵 ) ) |
| 9 | 4 6 8 | 3anim123d | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑒 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑓 ) ∈ 𝐵 ) ) ) |
| 10 | 1 2 9 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑒 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑓 ) ∈ 𝐵 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑒 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑓 ) ∈ 𝐵 ) ) |
| 12 | breq12 | ⊢ ( ( 𝑎 = ( 𝐻 ‘ 𝑑 ) ∧ 𝑎 = ( 𝐻 ‘ 𝑑 ) ) → ( 𝑎 𝑆 𝑎 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) | |
| 13 | 12 | anidms | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( 𝑎 𝑆 𝑎 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) |
| 14 | 13 | notbid | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( ¬ 𝑎 𝑆 𝑎 ↔ ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) |
| 15 | breq1 | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( 𝑎 𝑆 𝑏 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ) ) | |
| 16 | 15 | anbi1d | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) ↔ ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) ) ) |
| 17 | breq1 | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( 𝑎 𝑆 𝑐 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ↔ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) ) |
| 19 | 14 18 | anbi12d | ⊢ ( 𝑎 = ( 𝐻 ‘ 𝑑 ) → ( ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ↔ ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) ) ) |
| 20 | breq2 | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑒 ) → ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ) ) | |
| 21 | breq1 | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑒 ) → ( 𝑏 𝑆 𝑐 ↔ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) ) | |
| 22 | 20 21 | anbi12d | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑒 ) → ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) ↔ ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) ) ) |
| 23 | 22 | imbi1d | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑒 ) → ( ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ↔ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) ) |
| 24 | 23 | anbi2d | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝑒 ) → ( ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) ↔ ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) ) ) |
| 25 | breq2 | ⊢ ( 𝑐 = ( 𝐻 ‘ 𝑓 ) → ( ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ↔ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) | |
| 26 | 25 | anbi2d | ⊢ ( 𝑐 = ( 𝐻 ‘ 𝑓 ) → ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) ↔ ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) |
| 27 | breq2 | ⊢ ( 𝑐 = ( 𝐻 ‘ 𝑓 ) → ( ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) | |
| 28 | 26 27 | imbi12d | ⊢ ( 𝑐 = ( 𝐻 ‘ 𝑓 ) → ( ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ↔ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) → ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) |
| 29 | 28 | anbi2d | ⊢ ( 𝑐 = ( 𝐻 ‘ 𝑓 ) → ( ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 𝑐 ) → ( 𝐻 ‘ 𝑑 ) 𝑆 𝑐 ) ) ↔ ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) → ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) ) |
| 30 | 19 24 29 | rspc3v | ⊢ ( ( ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑒 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑓 ) ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) → ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) → ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) ) |
| 31 | 11 30 | syl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) → ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) → ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) ) |
| 32 | simpl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 33 | simpr1 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → 𝑑 ∈ 𝐴 ) | |
| 34 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑑 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) | |
| 35 | 32 33 33 34 | syl12anc | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑑 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) |
| 36 | 35 | notbid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ¬ 𝑑 𝑅 𝑑 ↔ ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) |
| 37 | simpr2 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → 𝑒 ∈ 𝐴 ) | |
| 38 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑒 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ) ) | |
| 39 | 32 33 37 38 | syl12anc | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑒 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ) ) |
| 40 | simpr3 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → 𝑓 ∈ 𝐴 ) | |
| 41 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( 𝑒 𝑅 𝑓 ↔ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) | |
| 42 | 32 37 40 41 | syl12anc | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( 𝑒 𝑅 𝑓 ↔ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) |
| 43 | 39 42 | anbi12d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) ↔ ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) |
| 44 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑓 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) | |
| 45 | 32 33 40 44 | syl12anc | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑓 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) |
| 46 | 43 45 | imbi12d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ↔ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) → ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) |
| 47 | 36 46 | anbi12d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ↔ ( ¬ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∧ ( ( ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑒 ) ∧ ( 𝐻 ‘ 𝑒 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) → ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑓 ) ) ) ) ) |
| 48 | 31 47 | sylibrd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) → ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) ) |
| 49 | 48 | ex | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) → ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) ) ) |
| 50 | 49 | com23 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) → ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) ) ) |
| 51 | 50 | imp31 | ⊢ ( ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴 ) ) → ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) |
| 52 | 51 | ralrimivvva | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) → ∀ 𝑑 ∈ 𝐴 ∀ 𝑒 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) |
| 53 | 52 | ex | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) → ∀ 𝑑 ∈ 𝐴 ∀ 𝑒 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) ) |
| 54 | df-po | ⊢ ( 𝑆 Po 𝐵 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) | |
| 55 | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑑 ∈ 𝐴 ∀ 𝑒 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( ¬ 𝑑 𝑅 𝑑 ∧ ( ( 𝑑 𝑅 𝑒 ∧ 𝑒 𝑅 𝑓 ) → 𝑑 𝑅 𝑓 ) ) ) | |
| 56 | 53 54 55 | 3imtr4g | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Po 𝐵 → 𝑅 Po 𝐴 ) ) |