This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isopo . (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isopolem | |- ( H Isom R , S ( A , B ) -> ( S Po B -> R Po A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 2 | f1of | |- ( H : A -1-1-onto-> B -> H : A --> B ) |
|
| 3 | ffvelcdm | |- ( ( H : A --> B /\ d e. A ) -> ( H ` d ) e. B ) |
|
| 4 | 3 | ex | |- ( H : A --> B -> ( d e. A -> ( H ` d ) e. B ) ) |
| 5 | ffvelcdm | |- ( ( H : A --> B /\ e e. A ) -> ( H ` e ) e. B ) |
|
| 6 | 5 | ex | |- ( H : A --> B -> ( e e. A -> ( H ` e ) e. B ) ) |
| 7 | ffvelcdm | |- ( ( H : A --> B /\ f e. A ) -> ( H ` f ) e. B ) |
|
| 8 | 7 | ex | |- ( H : A --> B -> ( f e. A -> ( H ` f ) e. B ) ) |
| 9 | 4 6 8 | 3anim123d | |- ( H : A --> B -> ( ( d e. A /\ e e. A /\ f e. A ) -> ( ( H ` d ) e. B /\ ( H ` e ) e. B /\ ( H ` f ) e. B ) ) ) |
| 10 | 1 2 9 | 3syl | |- ( H Isom R , S ( A , B ) -> ( ( d e. A /\ e e. A /\ f e. A ) -> ( ( H ` d ) e. B /\ ( H ` e ) e. B /\ ( H ` f ) e. B ) ) ) |
| 11 | 10 | imp | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( ( H ` d ) e. B /\ ( H ` e ) e. B /\ ( H ` f ) e. B ) ) |
| 12 | breq12 | |- ( ( a = ( H ` d ) /\ a = ( H ` d ) ) -> ( a S a <-> ( H ` d ) S ( H ` d ) ) ) |
|
| 13 | 12 | anidms | |- ( a = ( H ` d ) -> ( a S a <-> ( H ` d ) S ( H ` d ) ) ) |
| 14 | 13 | notbid | |- ( a = ( H ` d ) -> ( -. a S a <-> -. ( H ` d ) S ( H ` d ) ) ) |
| 15 | breq1 | |- ( a = ( H ` d ) -> ( a S b <-> ( H ` d ) S b ) ) |
|
| 16 | 15 | anbi1d | |- ( a = ( H ` d ) -> ( ( a S b /\ b S c ) <-> ( ( H ` d ) S b /\ b S c ) ) ) |
| 17 | breq1 | |- ( a = ( H ` d ) -> ( a S c <-> ( H ` d ) S c ) ) |
|
| 18 | 16 17 | imbi12d | |- ( a = ( H ` d ) -> ( ( ( a S b /\ b S c ) -> a S c ) <-> ( ( ( H ` d ) S b /\ b S c ) -> ( H ` d ) S c ) ) ) |
| 19 | 14 18 | anbi12d | |- ( a = ( H ` d ) -> ( ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) <-> ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S b /\ b S c ) -> ( H ` d ) S c ) ) ) ) |
| 20 | breq2 | |- ( b = ( H ` e ) -> ( ( H ` d ) S b <-> ( H ` d ) S ( H ` e ) ) ) |
|
| 21 | breq1 | |- ( b = ( H ` e ) -> ( b S c <-> ( H ` e ) S c ) ) |
|
| 22 | 20 21 | anbi12d | |- ( b = ( H ` e ) -> ( ( ( H ` d ) S b /\ b S c ) <-> ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S c ) ) ) |
| 23 | 22 | imbi1d | |- ( b = ( H ` e ) -> ( ( ( ( H ` d ) S b /\ b S c ) -> ( H ` d ) S c ) <-> ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S c ) -> ( H ` d ) S c ) ) ) |
| 24 | 23 | anbi2d | |- ( b = ( H ` e ) -> ( ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S b /\ b S c ) -> ( H ` d ) S c ) ) <-> ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S c ) -> ( H ` d ) S c ) ) ) ) |
| 25 | breq2 | |- ( c = ( H ` f ) -> ( ( H ` e ) S c <-> ( H ` e ) S ( H ` f ) ) ) |
|
| 26 | 25 | anbi2d | |- ( c = ( H ` f ) -> ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S c ) <-> ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) ) ) |
| 27 | breq2 | |- ( c = ( H ` f ) -> ( ( H ` d ) S c <-> ( H ` d ) S ( H ` f ) ) ) |
|
| 28 | 26 27 | imbi12d | |- ( c = ( H ` f ) -> ( ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S c ) -> ( H ` d ) S c ) <-> ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) -> ( H ` d ) S ( H ` f ) ) ) ) |
| 29 | 28 | anbi2d | |- ( c = ( H ` f ) -> ( ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S c ) -> ( H ` d ) S c ) ) <-> ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) -> ( H ` d ) S ( H ` f ) ) ) ) ) |
| 30 | 19 24 29 | rspc3v | |- ( ( ( H ` d ) e. B /\ ( H ` e ) e. B /\ ( H ` f ) e. B ) -> ( A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) -> ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) -> ( H ` d ) S ( H ` f ) ) ) ) ) |
| 31 | 11 30 | syl | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) -> ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) -> ( H ` d ) S ( H ` f ) ) ) ) ) |
| 32 | simpl | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> H Isom R , S ( A , B ) ) |
|
| 33 | simpr1 | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> d e. A ) |
|
| 34 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ d e. A ) ) -> ( d R d <-> ( H ` d ) S ( H ` d ) ) ) |
|
| 35 | 32 33 33 34 | syl12anc | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( d R d <-> ( H ` d ) S ( H ` d ) ) ) |
| 36 | 35 | notbid | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( -. d R d <-> -. ( H ` d ) S ( H ` d ) ) ) |
| 37 | simpr2 | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> e e. A ) |
|
| 38 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A ) ) -> ( d R e <-> ( H ` d ) S ( H ` e ) ) ) |
|
| 39 | 32 33 37 38 | syl12anc | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( d R e <-> ( H ` d ) S ( H ` e ) ) ) |
| 40 | simpr3 | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> f e. A ) |
|
| 41 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( e e. A /\ f e. A ) ) -> ( e R f <-> ( H ` e ) S ( H ` f ) ) ) |
|
| 42 | 32 37 40 41 | syl12anc | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( e R f <-> ( H ` e ) S ( H ` f ) ) ) |
| 43 | 39 42 | anbi12d | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( ( d R e /\ e R f ) <-> ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) ) ) |
| 44 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ f e. A ) ) -> ( d R f <-> ( H ` d ) S ( H ` f ) ) ) |
|
| 45 | 32 33 40 44 | syl12anc | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( d R f <-> ( H ` d ) S ( H ` f ) ) ) |
| 46 | 43 45 | imbi12d | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( ( ( d R e /\ e R f ) -> d R f ) <-> ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) -> ( H ` d ) S ( H ` f ) ) ) ) |
| 47 | 36 46 | anbi12d | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) <-> ( -. ( H ` d ) S ( H ` d ) /\ ( ( ( H ` d ) S ( H ` e ) /\ ( H ` e ) S ( H ` f ) ) -> ( H ` d ) S ( H ` f ) ) ) ) ) |
| 48 | 31 47 | sylibrd | |- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) -> ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) ) |
| 49 | 48 | ex | |- ( H Isom R , S ( A , B ) -> ( ( d e. A /\ e e. A /\ f e. A ) -> ( A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) -> ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) ) ) |
| 50 | 49 | com23 | |- ( H Isom R , S ( A , B ) -> ( A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) -> ( ( d e. A /\ e e. A /\ f e. A ) -> ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) ) ) |
| 51 | 50 | imp31 | |- ( ( ( H Isom R , S ( A , B ) /\ A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) ) /\ ( d e. A /\ e e. A /\ f e. A ) ) -> ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) |
| 52 | 51 | ralrimivvva | |- ( ( H Isom R , S ( A , B ) /\ A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) ) -> A. d e. A A. e e. A A. f e. A ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) |
| 53 | 52 | ex | |- ( H Isom R , S ( A , B ) -> ( A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) -> A. d e. A A. e e. A A. f e. A ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) ) |
| 54 | df-po | |- ( S Po B <-> A. a e. B A. b e. B A. c e. B ( -. a S a /\ ( ( a S b /\ b S c ) -> a S c ) ) ) |
|
| 55 | df-po | |- ( R Po A <-> A. d e. A A. e e. A A. f e. A ( -. d R d /\ ( ( d R e /\ e R f ) -> d R f ) ) ) |
|
| 56 | 53 54 55 | 3imtr4g | |- ( H Isom R , S ( A , B ) -> ( S Po B -> R Po A ) ) |