This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isohom.b | ||
| isohom.h | |||
| isohom.i | |||
| isohom.c | |||
| isohom.x | |||
| isohom.y | |||
| Assertion | isohom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isohom.b | ||
| 2 | isohom.h | ||
| 3 | isohom.i | ||
| 4 | isohom.c | ||
| 5 | isohom.x | ||
| 6 | isohom.y | ||
| 7 | eqid | ||
| 8 | 1 7 4 5 6 3 | isoval | |
| 9 | 1 7 4 5 6 2 | invss | |
| 10 | dmss | ||
| 11 | 9 10 | syl | |
| 12 | 8 11 | eqsstrd | |
| 13 | dmxpss | ||
| 14 | 12 13 | sstrdi |