This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is a relation between morphisms F : X --> Y and their inverses G : Y --> X . (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| invss.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | invss | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | invss.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 8 | 1 2 3 4 5 7 | invfval | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
| 9 | inss1 | ⊢ ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ⊆ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) | |
| 10 | 8 9 | eqsstrdi | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) |
| 11 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 13 | 1 6 11 12 7 3 4 5 | sectss | ⊢ ( 𝜑 → ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| 14 | 10 13 | sstrd | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |