This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isofval2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isofval2.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| isofval2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isofval2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| Assertion | isofval2 | ⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofval2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isofval2.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | isofval2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | isofval2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 5 | isofn | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 6 | 4 | fneq1i | ⊢ ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
| 7 | 1 1 | xpeq12i | ⊢ ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 8 | 7 | fneq2i | ⊢ ( ( Iso ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 9 | 6 8 | bitri | ⊢ ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 10 | 5 9 | sylibr | ⊢ ( 𝐶 ∈ Cat → 𝐼 Fn ( 𝐵 × 𝐵 ) ) |
| 11 | fnov | ⊢ ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝐶 ∈ Cat → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
| 14 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 15 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 16 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 17 | 1 2 14 15 16 4 | isoval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝐼 𝑦 ) = dom ( 𝑥 𝑁 𝑦 ) ) |
| 18 | 17 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) ) |
| 19 | 13 18 | eqtrd | ⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) ) |