This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isofval2.b | |- B = ( Base ` C ) |
|
| isofval2.n | |- N = ( Inv ` C ) |
||
| isofval2.c | |- ( ph -> C e. Cat ) |
||
| isofval2.i | |- I = ( Iso ` C ) |
||
| Assertion | isofval2 | |- ( ph -> I = ( x e. B , y e. B |-> dom ( x N y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofval2.b | |- B = ( Base ` C ) |
|
| 2 | isofval2.n | |- N = ( Inv ` C ) |
|
| 3 | isofval2.c | |- ( ph -> C e. Cat ) |
|
| 4 | isofval2.i | |- I = ( Iso ` C ) |
|
| 5 | isofn | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 6 | 4 | fneq1i | |- ( I Fn ( B X. B ) <-> ( Iso ` C ) Fn ( B X. B ) ) |
| 7 | 1 1 | xpeq12i | |- ( B X. B ) = ( ( Base ` C ) X. ( Base ` C ) ) |
| 8 | 7 | fneq2i | |- ( ( Iso ` C ) Fn ( B X. B ) <-> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 9 | 6 8 | bitri | |- ( I Fn ( B X. B ) <-> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 10 | 5 9 | sylibr | |- ( C e. Cat -> I Fn ( B X. B ) ) |
| 11 | fnov | |- ( I Fn ( B X. B ) <-> I = ( x e. B , y e. B |-> ( x I y ) ) ) |
|
| 12 | 10 11 | sylib | |- ( C e. Cat -> I = ( x e. B , y e. B |-> ( x I y ) ) ) |
| 13 | 3 12 | syl | |- ( ph -> I = ( x e. B , y e. B |-> ( x I y ) ) ) |
| 14 | 3 | 3ad2ant1 | |- ( ( ph /\ x e. B /\ y e. B ) -> C e. Cat ) |
| 15 | simp2 | |- ( ( ph /\ x e. B /\ y e. B ) -> x e. B ) |
|
| 16 | simp3 | |- ( ( ph /\ x e. B /\ y e. B ) -> y e. B ) |
|
| 17 | 1 2 14 15 16 4 | isoval | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x I y ) = dom ( x N y ) ) |
| 18 | 17 | mpoeq3dva | |- ( ph -> ( x e. B , y e. B |-> ( x I y ) ) = ( x e. B , y e. B |-> dom ( x N y ) ) ) |
| 19 | 13 18 | eqtrd | |- ( ph -> I = ( x e. B , y e. B |-> dom ( x N y ) ) ) |