This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isof1oopb | |- ( H : A -1-1-onto-> B <-> H Isom ( _V X. _V ) , ( _V X. _V ) ( A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( H ` x ) e. _V |
|
| 2 | fvex | |- ( H ` y ) e. _V |
|
| 3 | 1 2 | opelvv | |- <. ( H ` x ) , ( H ` y ) >. e. ( _V X. _V ) |
| 4 | df-br | |- ( ( H ` x ) ( _V X. _V ) ( H ` y ) <-> <. ( H ` x ) , ( H ` y ) >. e. ( _V X. _V ) ) |
|
| 5 | 3 4 | mpbir | |- ( H ` x ) ( _V X. _V ) ( H ` y ) |
| 6 | 5 | a1i | |- ( x ( _V X. _V ) y -> ( H ` x ) ( _V X. _V ) ( H ` y ) ) |
| 7 | opelvvg | |- ( ( x e. A /\ y e. A ) -> <. x , y >. e. ( _V X. _V ) ) |
|
| 8 | df-br | |- ( x ( _V X. _V ) y <-> <. x , y >. e. ( _V X. _V ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( x e. A /\ y e. A ) -> x ( _V X. _V ) y ) |
| 10 | 9 | a1d | |- ( ( x e. A /\ y e. A ) -> ( ( H ` x ) ( _V X. _V ) ( H ` y ) -> x ( _V X. _V ) y ) ) |
| 11 | 6 10 | impbid2 | |- ( ( x e. A /\ y e. A ) -> ( x ( _V X. _V ) y <-> ( H ` x ) ( _V X. _V ) ( H ` y ) ) ) |
| 12 | 11 | adantl | |- ( ( H : A -1-1-onto-> B /\ ( x e. A /\ y e. A ) ) -> ( x ( _V X. _V ) y <-> ( H ` x ) ( _V X. _V ) ( H ` y ) ) ) |
| 13 | 12 | ralrimivva | |- ( H : A -1-1-onto-> B -> A. x e. A A. y e. A ( x ( _V X. _V ) y <-> ( H ` x ) ( _V X. _V ) ( H ` y ) ) ) |
| 14 | 13 | pm4.71i | |- ( H : A -1-1-onto-> B <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x ( _V X. _V ) y <-> ( H ` x ) ( _V X. _V ) ( H ` y ) ) ) ) |
| 15 | df-isom | |- ( H Isom ( _V X. _V ) , ( _V X. _V ) ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x ( _V X. _V ) y <-> ( H ` x ) ( _V X. _V ) ( H ` y ) ) ) ) |
|
| 16 | 14 15 | bitr4i | |- ( H : A -1-1-onto-> B <-> H Isom ( _V X. _V ) , ( _V X. _V ) ( A , B ) ) |