This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the equivalence relation in a quotient ring or quotient group (where i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nsg | ⊢ NrmSGrp = ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnsg | ⊢ NrmSGrp | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | csubg | ⊢ SubGrp | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( SubGrp ‘ 𝑤 ) |
| 7 | cbs | ⊢ Base | |
| 8 | 5 7 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 9 | vb | ⊢ 𝑏 | |
| 10 | cplusg | ⊢ +g | |
| 11 | 5 10 | cfv | ⊢ ( +g ‘ 𝑤 ) |
| 12 | vp | ⊢ 𝑝 | |
| 13 | vx | ⊢ 𝑥 | |
| 14 | 9 | cv | ⊢ 𝑏 |
| 15 | vy | ⊢ 𝑦 | |
| 16 | 13 | cv | ⊢ 𝑥 |
| 17 | 12 | cv | ⊢ 𝑝 |
| 18 | 15 | cv | ⊢ 𝑦 |
| 19 | 16 18 17 | co | ⊢ ( 𝑥 𝑝 𝑦 ) |
| 20 | 3 | cv | ⊢ 𝑠 |
| 21 | 19 20 | wcel | ⊢ ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 |
| 22 | 18 16 17 | co | ⊢ ( 𝑦 𝑝 𝑥 ) |
| 23 | 22 20 | wcel | ⊢ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 |
| 24 | 21 23 | wb | ⊢ ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 25 | 24 15 14 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 26 | 25 13 14 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 27 | 26 12 11 | wsbc | ⊢ [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 28 | 27 9 8 | wsbc | ⊢ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 29 | 28 3 6 | crab | ⊢ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } |
| 30 | 1 2 29 | cmpt | ⊢ ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } ) |
| 31 | 0 30 | wceq | ⊢ NrmSGrp = ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } ) |