This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnmnd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| isnmnd.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
| Assertion | isnmnd | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → 𝑀 ∉ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnmnd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | isnmnd.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
| 3 | neneq | ⊢ ( ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( 𝑧 ⚬ 𝑥 ) = 𝑥 ) | |
| 4 | 3 | intnanrd | ⊢ ( ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 7 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) | |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 9 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ¬ ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 11 | 6 10 | sylib | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) |
| 12 | 11 | intnand | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) ) |
| 13 | 1 2 | ismnddef | ⊢ ( 𝑀 ∈ Mnd ↔ ( 𝑀 ∈ Smgrp ∧ ∃ 𝑧 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑧 ⚬ 𝑥 ) = 𝑥 ∧ ( 𝑥 ⚬ 𝑧 ) = 𝑥 ) ) ) |
| 14 | 12 13 | sylnibr | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd ) |
| 15 | df-nel | ⊢ ( 𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd ) | |
| 16 | 14 15 | sylibr | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ⚬ 𝑥 ) ≠ 𝑥 → 𝑀 ∉ Mnd ) |