This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnmnd.b | |- B = ( Base ` M ) |
|
| isnmnd.o | |- .o. = ( +g ` M ) |
||
| Assertion | isnmnd | |- ( A. z e. B E. x e. B ( z .o. x ) =/= x -> M e/ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnmnd.b | |- B = ( Base ` M ) |
|
| 2 | isnmnd.o | |- .o. = ( +g ` M ) |
|
| 3 | neneq | |- ( ( z .o. x ) =/= x -> -. ( z .o. x ) = x ) |
|
| 4 | 3 | intnanrd | |- ( ( z .o. x ) =/= x -> -. ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
| 5 | 4 | reximi | |- ( E. x e. B ( z .o. x ) =/= x -> E. x e. B -. ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
| 6 | 5 | ralimi | |- ( A. z e. B E. x e. B ( z .o. x ) =/= x -> A. z e. B E. x e. B -. ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
| 7 | rexnal | |- ( E. x e. B -. ( ( z .o. x ) = x /\ ( x .o. z ) = x ) <-> -. A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
|
| 8 | 7 | ralbii | |- ( A. z e. B E. x e. B -. ( ( z .o. x ) = x /\ ( x .o. z ) = x ) <-> A. z e. B -. A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
| 9 | ralnex | |- ( A. z e. B -. A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) <-> -. E. z e. B A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
|
| 10 | 8 9 | bitri | |- ( A. z e. B E. x e. B -. ( ( z .o. x ) = x /\ ( x .o. z ) = x ) <-> -. E. z e. B A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
| 11 | 6 10 | sylib | |- ( A. z e. B E. x e. B ( z .o. x ) =/= x -> -. E. z e. B A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) |
| 12 | 11 | intnand | |- ( A. z e. B E. x e. B ( z .o. x ) =/= x -> -. ( M e. Smgrp /\ E. z e. B A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) ) |
| 13 | 1 2 | ismnddef | |- ( M e. Mnd <-> ( M e. Smgrp /\ E. z e. B A. x e. B ( ( z .o. x ) = x /\ ( x .o. z ) = x ) ) ) |
| 14 | 12 13 | sylnibr | |- ( A. z e. B E. x e. B ( z .o. x ) =/= x -> -. M e. Mnd ) |
| 15 | df-nel | |- ( M e/ Mnd <-> -. M e. Mnd ) |
|
| 16 | 14 15 | sylibr | |- ( A. z e. B E. x e. B ( z .o. x ) =/= x -> M e/ Mnd ) |