This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| Assertion | nmof | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | nmofval | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| 6 | ssrab2 | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) | |
| 7 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 8 | 6 7 | sstri | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ⊆ ℝ* |
| 9 | infxrcl | ⊢ ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ⊆ ℝ* → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 11 | 5 10 | fmpt3d | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* ) |