This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natfval.1 | |- N = ( C Nat D ) |
|
| natfval.b | |- B = ( Base ` C ) |
||
| natfval.h | |- H = ( Hom ` C ) |
||
| natfval.j | |- J = ( Hom ` D ) |
||
| natfval.o | |- .x. = ( comp ` D ) |
||
| isnat.f | |- ( ph -> F ( C Func D ) G ) |
||
| isnat.g | |- ( ph -> K ( C Func D ) L ) |
||
| Assertion | isnat | |- ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natfval.1 | |- N = ( C Nat D ) |
|
| 2 | natfval.b | |- B = ( Base ` C ) |
|
| 3 | natfval.h | |- H = ( Hom ` C ) |
|
| 4 | natfval.j | |- J = ( Hom ` D ) |
|
| 5 | natfval.o | |- .x. = ( comp ` D ) |
|
| 6 | isnat.f | |- ( ph -> F ( C Func D ) G ) |
|
| 7 | isnat.g | |- ( ph -> K ( C Func D ) L ) |
|
| 8 | 1 2 3 4 5 | natfval | |- N = ( f e. ( C Func D ) , g e. ( C Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } ) |
| 9 | 8 | a1i | |- ( ph -> N = ( f e. ( C Func D ) , g e. ( C Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } ) ) |
| 10 | fvexd | |- ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` f ) e. _V ) |
|
| 11 | simprl | |- ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> f = <. F , G >. ) |
|
| 12 | 11 | fveq2d | |- ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` f ) = ( 1st ` <. F , G >. ) ) |
| 13 | relfunc | |- Rel ( C Func D ) |
|
| 14 | brrelex12 | |- ( ( Rel ( C Func D ) /\ F ( C Func D ) G ) -> ( F e. _V /\ G e. _V ) ) |
|
| 15 | 13 6 14 | sylancr | |- ( ph -> ( F e. _V /\ G e. _V ) ) |
| 16 | op1stg | |- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 18 | 17 | adantr | |- ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` <. F , G >. ) = F ) |
| 19 | 12 18 | eqtrd | |- ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` f ) = F ) |
| 20 | fvexd | |- ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` g ) e. _V ) |
|
| 21 | simplrr | |- ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> g = <. K , L >. ) |
|
| 22 | 21 | fveq2d | |- ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` g ) = ( 1st ` <. K , L >. ) ) |
| 23 | brrelex12 | |- ( ( Rel ( C Func D ) /\ K ( C Func D ) L ) -> ( K e. _V /\ L e. _V ) ) |
|
| 24 | 13 7 23 | sylancr | |- ( ph -> ( K e. _V /\ L e. _V ) ) |
| 25 | op1stg | |- ( ( K e. _V /\ L e. _V ) -> ( 1st ` <. K , L >. ) = K ) |
|
| 26 | 24 25 | syl | |- ( ph -> ( 1st ` <. K , L >. ) = K ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` <. K , L >. ) = K ) |
| 28 | 22 27 | eqtrd | |- ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` g ) = K ) |
| 29 | simplr | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> r = F ) |
|
| 30 | 29 | fveq1d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( r ` x ) = ( F ` x ) ) |
| 31 | simpr | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> s = K ) |
|
| 32 | 31 | fveq1d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( s ` x ) = ( K ` x ) ) |
| 33 | 30 32 | oveq12d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( r ` x ) J ( s ` x ) ) = ( ( F ` x ) J ( K ` x ) ) ) |
| 34 | 33 | ixpeq2dv | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> X_ x e. B ( ( r ` x ) J ( s ` x ) ) = X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) |
| 35 | 29 | fveq1d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( r ` y ) = ( F ` y ) ) |
| 36 | 30 35 | opeq12d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> <. ( r ` x ) , ( r ` y ) >. = <. ( F ` x ) , ( F ` y ) >. ) |
| 37 | 31 | fveq1d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( s ` y ) = ( K ` y ) ) |
| 38 | 36 37 | oveq12d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) = ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ) |
| 39 | eqidd | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( a ` y ) = ( a ` y ) ) |
|
| 40 | 11 | ad2antrr | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> f = <. F , G >. ) |
| 41 | 40 | fveq2d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` f ) = ( 2nd ` <. F , G >. ) ) |
| 42 | op2ndg | |- ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 43 | 15 42 | syl | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 44 | 43 | ad3antrrr | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` <. F , G >. ) = G ) |
| 45 | 41 44 | eqtrd | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` f ) = G ) |
| 46 | 45 | oveqd | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( x ( 2nd ` f ) y ) = ( x G y ) ) |
| 47 | 46 | fveq1d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( x ( 2nd ` f ) y ) ` h ) = ( ( x G y ) ` h ) ) |
| 48 | 38 39 47 | oveq123d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) ) |
| 49 | 30 32 | opeq12d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> <. ( r ` x ) , ( s ` x ) >. = <. ( F ` x ) , ( K ` x ) >. ) |
| 50 | 49 37 | oveq12d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) = ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ) |
| 51 | 21 | adantr | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> g = <. K , L >. ) |
| 52 | 51 | fveq2d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` g ) = ( 2nd ` <. K , L >. ) ) |
| 53 | op2ndg | |- ( ( K e. _V /\ L e. _V ) -> ( 2nd ` <. K , L >. ) = L ) |
|
| 54 | 24 53 | syl | |- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 55 | 54 | ad3antrrr | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` <. K , L >. ) = L ) |
| 56 | 52 55 | eqtrd | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` g ) = L ) |
| 57 | 56 | oveqd | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( x ( 2nd ` g ) y ) = ( x L y ) ) |
| 58 | 57 | fveq1d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( x ( 2nd ` g ) y ) ` h ) = ( ( x L y ) ` h ) ) |
| 59 | eqidd | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( a ` x ) = ( a ` x ) ) |
|
| 60 | 50 58 59 | oveq123d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) |
| 61 | 48 60 | eqeq12d | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) <-> ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) ) |
| 62 | 61 | ralbidv | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) <-> A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) ) |
| 63 | 62 | 2ralbidv | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) <-> A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) ) |
| 64 | 34 63 | rabeqbidv | |- ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) |
| 65 | 20 28 64 | csbied2 | |- ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) |
| 66 | 10 19 65 | csbied2 | |- ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) |
| 67 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 68 | 6 67 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 69 | df-br | |- ( K ( C Func D ) L <-> <. K , L >. e. ( C Func D ) ) |
|
| 70 | 7 69 | sylib | |- ( ph -> <. K , L >. e. ( C Func D ) ) |
| 71 | ovex | |- ( ( F ` x ) J ( K ` x ) ) e. _V |
|
| 72 | 71 | rgenw | |- A. x e. B ( ( F ` x ) J ( K ` x ) ) e. _V |
| 73 | ixpexg | |- ( A. x e. B ( ( F ` x ) J ( K ` x ) ) e. _V -> X_ x e. B ( ( F ` x ) J ( K ` x ) ) e. _V ) |
|
| 74 | 72 73 | ax-mp | |- X_ x e. B ( ( F ` x ) J ( K ` x ) ) e. _V |
| 75 | 74 | rabex | |- { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } e. _V |
| 76 | 75 | a1i | |- ( ph -> { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } e. _V ) |
| 77 | 9 66 68 70 76 | ovmpod | |- ( ph -> ( <. F , G >. N <. K , L >. ) = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) |
| 78 | 77 | eleq2d | |- ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> A e. { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) ) |
| 79 | fveq1 | |- ( a = A -> ( a ` y ) = ( A ` y ) ) |
|
| 80 | 79 | oveq1d | |- ( a = A -> ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) ) |
| 81 | fveq1 | |- ( a = A -> ( a ` x ) = ( A ` x ) ) |
|
| 82 | 81 | oveq2d | |- ( a = A -> ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) |
| 83 | 80 82 | eqeq12d | |- ( a = A -> ( ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) <-> ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) |
| 84 | 83 | ralbidv | |- ( a = A -> ( A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) <-> A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) |
| 85 | 84 | 2ralbidv | |- ( a = A -> ( A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) <-> A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) |
| 86 | 85 | elrab | |- ( A e. { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) |
| 87 | 78 86 | bitrdi | |- ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) ) |