This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismre | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | elex | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ V ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) → 𝑋 ∈ V ) |
| 4 | pweq | ⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) | |
| 5 | 4 | pweqd | ⊢ ( 𝑥 = 𝑋 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝑋 ) |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑐 ↔ 𝑋 ∈ 𝑐 ) ) | |
| 7 | 6 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ↔ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ) ) |
| 8 | 5 7 | rabeqbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } = { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
| 9 | df-mre | ⊢ Moore = ( 𝑥 ∈ V ↦ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) | |
| 10 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
| 11 | 10 | pwex | ⊢ 𝒫 𝒫 𝑥 ∈ V |
| 12 | 11 | rabex | ⊢ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ∈ V |
| 13 | 8 9 12 | fvmpt3i | ⊢ ( 𝑋 ∈ V → ( Moore ‘ 𝑋 ) = { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) |
| 14 | 13 | eleq2d | ⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ) ) |
| 15 | eleq2 | ⊢ ( 𝑐 = 𝐶 → ( 𝑋 ∈ 𝑐 ↔ 𝑋 ∈ 𝐶 ) ) | |
| 16 | pweq | ⊢ ( 𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶 ) | |
| 17 | eleq2 | ⊢ ( 𝑐 = 𝐶 → ( ∩ 𝑠 ∈ 𝑐 ↔ ∩ 𝑠 ∈ 𝐶 ) ) | |
| 18 | 17 | imbi2d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ↔ ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
| 19 | 16 18 | raleqbidv | ⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
| 20 | 15 19 | anbi12d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) ↔ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 21 | 20 | elrab | ⊢ ( 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ↔ ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 22 | 21 | a1i | ⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ { 𝑐 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝑋 ∈ 𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐 ) ) } ↔ ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) ) |
| 23 | pwexg | ⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ V ) | |
| 24 | elpw2g | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝐶 ∈ 𝒫 𝒫 𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ 𝒫 𝒫 𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋 ) ) |
| 26 | 25 | anbi1d | ⊢ ( 𝑋 ∈ V → ( ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) ) |
| 27 | 3anass | ⊢ ( ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) | |
| 28 | 26 27 | bitr4di | ⊢ ( 𝑋 ∈ V → ( ( 𝐶 ∈ 𝒫 𝒫 𝑋 ∧ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 29 | 14 22 28 | 3bitrd | ⊢ ( 𝑋 ∈ V → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) ) |
| 30 | 1 3 29 | pm5.21nii | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |