This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismre | |- ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( C e. ( Moore ` X ) -> X e. _V ) |
|
| 2 | elex | |- ( X e. C -> X e. _V ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) -> X e. _V ) |
| 4 | pweq | |- ( x = X -> ~P x = ~P X ) |
|
| 5 | 4 | pweqd | |- ( x = X -> ~P ~P x = ~P ~P X ) |
| 6 | eleq1 | |- ( x = X -> ( x e. c <-> X e. c ) ) |
|
| 7 | 6 | anbi1d | |- ( x = X -> ( ( x e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) <-> ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) ) ) |
| 8 | 5 7 | rabeqbidv | |- ( x = X -> { c e. ~P ~P x | ( x e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } = { c e. ~P ~P X | ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } ) |
| 9 | df-mre | |- Moore = ( x e. _V |-> { c e. ~P ~P x | ( x e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } ) |
|
| 10 | vpwex | |- ~P x e. _V |
|
| 11 | 10 | pwex | |- ~P ~P x e. _V |
| 12 | 11 | rabex | |- { c e. ~P ~P x | ( x e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } e. _V |
| 13 | 8 9 12 | fvmpt3i | |- ( X e. _V -> ( Moore ` X ) = { c e. ~P ~P X | ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } ) |
| 14 | 13 | eleq2d | |- ( X e. _V -> ( C e. ( Moore ` X ) <-> C e. { c e. ~P ~P X | ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } ) ) |
| 15 | eleq2 | |- ( c = C -> ( X e. c <-> X e. C ) ) |
|
| 16 | pweq | |- ( c = C -> ~P c = ~P C ) |
|
| 17 | eleq2 | |- ( c = C -> ( |^| s e. c <-> |^| s e. C ) ) |
|
| 18 | 17 | imbi2d | |- ( c = C -> ( ( s =/= (/) -> |^| s e. c ) <-> ( s =/= (/) -> |^| s e. C ) ) ) |
| 19 | 16 18 | raleqbidv | |- ( c = C -> ( A. s e. ~P c ( s =/= (/) -> |^| s e. c ) <-> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |
| 20 | 15 19 | anbi12d | |- ( c = C -> ( ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) <-> ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) |
| 21 | 20 | elrab | |- ( C e. { c e. ~P ~P X | ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } <-> ( C e. ~P ~P X /\ ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) |
| 22 | 21 | a1i | |- ( X e. _V -> ( C e. { c e. ~P ~P X | ( X e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } <-> ( C e. ~P ~P X /\ ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) ) |
| 23 | pwexg | |- ( X e. _V -> ~P X e. _V ) |
|
| 24 | elpw2g | |- ( ~P X e. _V -> ( C e. ~P ~P X <-> C C_ ~P X ) ) |
|
| 25 | 23 24 | syl | |- ( X e. _V -> ( C e. ~P ~P X <-> C C_ ~P X ) ) |
| 26 | 25 | anbi1d | |- ( X e. _V -> ( ( C e. ~P ~P X /\ ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) <-> ( C C_ ~P X /\ ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) ) |
| 27 | 3anass | |- ( ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) <-> ( C C_ ~P X /\ ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) |
|
| 28 | 26 27 | bitr4di | |- ( X e. _V -> ( ( C e. ~P ~P X /\ ( X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) |
| 29 | 14 22 28 | 3bitrd | |- ( X e. _V -> ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) ) |
| 30 | 1 3 29 | pm5.21nii | |- ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |