This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmismgmhm | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm | ⊢ ( 𝑅 ∈ Mnd → 𝑅 ∈ Mgm ) | |
| 2 | mndmgm | ⊢ ( 𝑆 ∈ Mnd → 𝑆 ∈ Mgm ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ) |
| 4 | 3simpa | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) → ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 5 | 3 4 | anim12i | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 12 | 6 7 8 9 10 11 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ↔ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) ) ) |
| 13 | 6 7 8 9 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ↔ ( ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 14 | 5 12 13 | 3imtr4i | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ) |