This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgmidmo | ⊢ ∃* 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) → ( 𝑢 + 𝑥 ) = 𝑥 ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝐵 ( 𝑢 + 𝑥 ) = 𝑥 ) |
| 3 | simpr | ⊢ ( ( ( 𝑤 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑤 ) = 𝑥 ) → ( 𝑥 + 𝑤 ) = 𝑥 ) | |
| 4 | 3 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑤 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑤 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑤 ) = 𝑥 ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 + 𝑤 ) = ( 𝑢 + 𝑤 ) ) | |
| 6 | id | ⊢ ( 𝑥 = 𝑢 → 𝑥 = 𝑢 ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 + 𝑤 ) = 𝑥 ↔ ( 𝑢 + 𝑤 ) = 𝑢 ) ) |
| 8 | 7 | rspcva | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑤 ) = 𝑥 ) → ( 𝑢 + 𝑤 ) = 𝑢 ) |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑢 + 𝑥 ) = ( 𝑢 + 𝑤 ) ) | |
| 10 | id | ⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑢 + 𝑥 ) = 𝑥 ↔ ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 12 | 11 | rspcva | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑢 + 𝑥 ) = 𝑥 ) → ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 13 | 8 12 | sylan9req | ⊢ ( ( ( 𝑢 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑤 ) = 𝑥 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑢 + 𝑥 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) |
| 14 | 13 | an42s | ⊢ ( ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ( 𝑢 + 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑤 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) |
| 15 | 14 | ex | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑢 + 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑤 ) = 𝑥 ) → 𝑢 = 𝑤 ) ) |
| 16 | 2 4 15 | syl2ani | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑤 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑤 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) ) |
| 17 | 16 | rgen2 | ⊢ ∀ 𝑢 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑤 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑤 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) |
| 18 | oveq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 + 𝑥 ) = ( 𝑤 + 𝑥 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 + 𝑥 ) = 𝑥 ↔ ( 𝑤 + 𝑥 ) = 𝑥 ) ) |
| 20 | 19 | ovanraleqv | ⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑤 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑤 ) = 𝑥 ) ) ) |
| 21 | 20 | rmo4 | ⊢ ( ∃* 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑤 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑤 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) ) |
| 22 | 17 21 | mpbir | ⊢ ∃* 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) |