This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma homomorphism is a function on the base sets which preserves the binary operation. (Contributed by AV, 24-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mgmhm | ⊢ MgmHom = ( 𝑠 ∈ Mgm , 𝑡 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmgmhm | ⊢ MgmHom | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cmgm | ⊢ Mgm | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | cbs | ⊢ Base | |
| 6 | 3 | cv | ⊢ 𝑡 |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑡 ) |
| 8 | cmap | ⊢ ↑m | |
| 9 | 1 | cv | ⊢ 𝑠 |
| 10 | 9 5 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 11 | 7 10 8 | co | ⊢ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) |
| 12 | vx | ⊢ 𝑥 | |
| 13 | vy | ⊢ 𝑦 | |
| 14 | 4 | cv | ⊢ 𝑓 |
| 15 | 12 | cv | ⊢ 𝑥 |
| 16 | cplusg | ⊢ +g | |
| 17 | 9 16 | cfv | ⊢ ( +g ‘ 𝑠 ) |
| 18 | 13 | cv | ⊢ 𝑦 |
| 19 | 15 18 17 | co | ⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
| 20 | 19 14 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) |
| 21 | 15 14 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 22 | 6 16 | cfv | ⊢ ( +g ‘ 𝑡 ) |
| 23 | 18 14 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 24 | 21 23 22 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 25 | 20 24 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 26 | 25 13 10 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 27 | 26 12 10 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 28 | 27 4 11 | crab | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } |
| 29 | 1 3 2 2 28 | cmpo | ⊢ ( 𝑠 ∈ Mgm , 𝑡 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
| 30 | 0 29 | wceq | ⊢ MgmHom = ( 𝑠 ∈ Mgm , 𝑡 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } ) |