This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | islpi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ¬ 𝑃 ∈ 𝑆 ) ) → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clslp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 4 | elun | ⊢ ( 𝑃 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 5 | df-or | ⊢ ( ( 𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝑃 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 7 | 3 6 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 8 | 7 | biimpd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 9 | 8 | imp32 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ¬ 𝑃 ∈ 𝑆 ) ) → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |