This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cldlp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | iscld3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| 3 | 1 | clslp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) ) |
| 5 | ssequn2 | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) | |
| 6 | 4 5 | bitr4di | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 7 | 2 6 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |