This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islocfin.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| islocfin.2 | ⊢ 𝑌 = ∪ 𝐴 | ||
| Assertion | islocfin | ⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islocfin.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | islocfin.2 | ⊢ 𝑌 = ∪ 𝐴 | |
| 3 | df-locfin | ⊢ LocFin = ( 𝑗 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑗 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) | |
| 4 | 3 | mptrcl | ⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 5 | eqimss2 | ⊢ ( 𝑋 = ∪ 𝑦 → ∪ 𝑦 ⊆ 𝑋 ) | |
| 6 | sspwuni | ⊢ ( 𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝑋 = ∪ 𝑦 → 𝑦 ⊆ 𝒫 𝑋 ) |
| 8 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 ↔ 𝑦 ⊆ 𝒫 𝑋 ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝑋 = ∪ 𝑦 → 𝑦 ∈ 𝒫 𝒫 𝑋 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) → 𝑦 ∈ 𝒫 𝒫 𝑋 ) |
| 11 | 10 | abssi | ⊢ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ⊆ 𝒫 𝒫 𝑋 |
| 12 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 13 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 14 | pwexg | ⊢ ( 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( 𝐽 ∈ Top → 𝒫 𝒫 𝑋 ∈ V ) |
| 16 | ssexg | ⊢ ( ( { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ⊆ 𝒫 𝒫 𝑋 ∧ 𝒫 𝒫 𝑋 ∈ V ) → { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) | |
| 17 | 11 15 16 | sylancr | ⊢ ( 𝐽 ∈ Top → { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) |
| 18 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 19 | 18 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 20 | 19 | eqeq1d | ⊢ ( 𝑗 = 𝐽 → ( ∪ 𝑗 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
| 21 | rexeq | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) | |
| 22 | 19 21 | raleqbidv | ⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑗 = 𝐽 → ( ( ∪ 𝑗 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
| 24 | 23 | abbidv | ⊢ ( 𝑗 = 𝐽 → { 𝑦 ∣ ( ∪ 𝑗 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } = { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
| 25 | 24 3 | fvmptg | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) → ( LocFin ‘ 𝐽 ) = { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
| 26 | 17 25 | mpdan | ⊢ ( 𝐽 ∈ Top → ( LocFin ‘ 𝐽 ) = { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
| 27 | 26 | eleq2d | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) ) |
| 28 | elex | ⊢ ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } → 𝐴 ∈ V ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) → 𝐴 ∈ V ) |
| 30 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) | |
| 31 | 30 2 | eqtrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 = ∪ 𝐴 ) |
| 32 | 12 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ 𝐽 ) |
| 33 | 31 32 | eqeltrrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 ∈ 𝐽 ) |
| 34 | 33 | elexd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 ∈ V ) |
| 35 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ V ) |
| 37 | 36 | adantrr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) → 𝐴 ∈ V ) |
| 38 | unieq | ⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴 ) | |
| 39 | 38 2 | eqtr4di | ⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = 𝑌 ) |
| 40 | 39 | eqeq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = 𝑌 ) ) |
| 41 | rabeq | ⊢ ( 𝑦 = 𝐴 → { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } = { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ↔ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 43 | 42 | anbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
| 44 | 43 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
| 46 | 40 45 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
| 47 | 46 | elabg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
| 48 | 29 37 47 | pm5.21nd | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
| 49 | 27 48 | bitrd | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
| 50 | 4 49 | biadanii | ⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
| 51 | 3anass | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) | |
| 52 | 50 51 | bitr4i | ⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |