This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-locfin | ⊢ LocFin = ( 𝑥 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clocfin | ⊢ LocFin | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | ctop | ⊢ Top | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | 4 | cuni | ⊢ ∪ 𝑥 |
| 6 | 3 | cv | ⊢ 𝑦 |
| 7 | 6 | cuni | ⊢ ∪ 𝑦 |
| 8 | 5 7 | wceq | ⊢ ∪ 𝑥 = ∪ 𝑦 |
| 9 | vp | ⊢ 𝑝 | |
| 10 | vn | ⊢ 𝑛 | |
| 11 | 9 | cv | ⊢ 𝑝 |
| 12 | 10 | cv | ⊢ 𝑛 |
| 13 | 11 12 | wcel | ⊢ 𝑝 ∈ 𝑛 |
| 14 | vs | ⊢ 𝑠 | |
| 15 | 14 | cv | ⊢ 𝑠 |
| 16 | 15 12 | cin | ⊢ ( 𝑠 ∩ 𝑛 ) |
| 17 | c0 | ⊢ ∅ | |
| 18 | 16 17 | wne | ⊢ ( 𝑠 ∩ 𝑛 ) ≠ ∅ |
| 19 | 18 14 6 | crab | ⊢ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } |
| 20 | cfn | ⊢ Fin | |
| 21 | 19 20 | wcel | ⊢ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin |
| 22 | 13 21 | wa | ⊢ ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
| 23 | 22 10 4 | wrex | ⊢ ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
| 24 | 23 9 5 | wral | ⊢ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
| 25 | 8 24 | wa | ⊢ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 26 | 25 3 | cab | ⊢ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } |
| 27 | 1 2 26 | cmpt | ⊢ ( 𝑥 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
| 28 | 0 27 | wceq | ⊢ LocFin = ( 𝑥 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |