This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline4.b | |- B = ( Base ` K ) |
|
| isline4.c | |- C = ( |
||
| isline4.a | |- A = ( Atoms ` K ) |
||
| isline4.n | |- N = ( Lines ` K ) |
||
| isline4.m | |- M = ( pmap ` K ) |
||
| Assertion | isline4N | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A p C X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline4.b | |- B = ( Base ` K ) |
|
| 2 | isline4.c | |- C = ( |
|
| 3 | isline4.a | |- A = ( Atoms ` K ) |
|
| 4 | isline4.n | |- N = ( Lines ` K ) |
|
| 5 | isline4.m | |- M = ( pmap ` K ) |
|
| 6 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 7 | 1 6 3 4 5 | isline3 | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
| 8 | simpll | |- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> K e. HL ) |
|
| 9 | 1 3 | atbase | |- ( p e. A -> p e. B ) |
| 10 | 9 | adantl | |- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> p e. B ) |
| 11 | simplr | |- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> X e. B ) |
|
| 12 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 13 | 1 12 6 2 3 | cvrval3 | |- ( ( K e. HL /\ p e. B /\ X e. B ) -> ( p C X <-> E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) ) ) |
| 14 | 8 10 11 13 | syl3anc | |- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( p C X <-> E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) ) ) |
| 15 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 16 | 15 | ad3antrrr | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> K e. AtLat ) |
| 17 | simpr | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> q e. A ) |
|
| 18 | simplr | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> p e. A ) |
|
| 19 | 12 3 | atncmp | |- ( ( K e. AtLat /\ q e. A /\ p e. A ) -> ( -. q ( le ` K ) p <-> q =/= p ) ) |
| 20 | 16 17 18 19 | syl3anc | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( -. q ( le ` K ) p <-> q =/= p ) ) |
| 21 | necom | |- ( q =/= p <-> p =/= q ) |
|
| 22 | 20 21 | bitrdi | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( -. q ( le ` K ) p <-> p =/= q ) ) |
| 23 | eqcom | |- ( ( p ( join ` K ) q ) = X <-> X = ( p ( join ` K ) q ) ) |
|
| 24 | 23 | a1i | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( ( p ( join ` K ) q ) = X <-> X = ( p ( join ` K ) q ) ) ) |
| 25 | 22 24 | anbi12d | |- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) <-> ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
| 26 | 25 | rexbidva | |- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) <-> E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
| 27 | 14 26 | bitrd | |- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( p C X <-> E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
| 28 | 27 | rexbidva | |- ( ( K e. HL /\ X e. B ) -> ( E. p e. A p C X <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
| 29 | 7 28 | bitr4d | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A p C X ) ) |