This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isisubgr.v | |- V = ( Vtx ` G ) |
|
| isisubgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | isisubgr | |- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isisubgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isisubgr.e | |- E = ( iEdg ` G ) |
|
| 3 | elex | |- ( G e. W -> G e. _V ) |
|
| 4 | 3 | adantr | |- ( ( G e. W /\ S C_ V ) -> G e. _V ) |
| 5 | 1 | fvexi | |- V e. _V |
| 6 | 5 | a1i | |- ( S C_ V -> V e. _V ) |
| 7 | id | |- ( S C_ V -> S C_ V ) |
|
| 8 | 6 7 | sselpwd | |- ( S C_ V -> S e. ~P V ) |
| 9 | 8 | adantl | |- ( ( G e. W /\ S C_ V ) -> S e. ~P V ) |
| 10 | opex | |- <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. e. _V |
|
| 11 | 10 | a1i | |- ( ( G e. W /\ S C_ V ) -> <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. e. _V ) |
| 12 | simpr | |- ( ( g = G /\ v = S ) -> v = S ) |
|
| 13 | fvexd | |- ( ( g = G /\ v = S ) -> ( iEdg ` g ) e. _V ) |
|
| 14 | fveq2 | |- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
|
| 15 | 14 2 | eqtr4di | |- ( g = G -> ( iEdg ` g ) = E ) |
| 16 | 15 | eqeq2d | |- ( g = G -> ( e = ( iEdg ` g ) <-> e = E ) ) |
| 17 | 16 | adantr | |- ( ( g = G /\ v = S ) -> ( e = ( iEdg ` g ) <-> e = E ) ) |
| 18 | simpr | |- ( ( v = S /\ e = E ) -> e = E ) |
|
| 19 | dmeq | |- ( e = E -> dom e = dom E ) |
|
| 20 | 19 | adantl | |- ( ( v = S /\ e = E ) -> dom e = dom E ) |
| 21 | fveq1 | |- ( e = E -> ( e ` x ) = ( E ` x ) ) |
|
| 22 | 21 | adantl | |- ( ( v = S /\ e = E ) -> ( e ` x ) = ( E ` x ) ) |
| 23 | simpl | |- ( ( v = S /\ e = E ) -> v = S ) |
|
| 24 | 22 23 | sseq12d | |- ( ( v = S /\ e = E ) -> ( ( e ` x ) C_ v <-> ( E ` x ) C_ S ) ) |
| 25 | 20 24 | rabeqbidv | |- ( ( v = S /\ e = E ) -> { x e. dom e | ( e ` x ) C_ v } = { x e. dom E | ( E ` x ) C_ S } ) |
| 26 | 18 25 | reseq12d | |- ( ( v = S /\ e = E ) -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| 27 | 26 | ex | |- ( v = S -> ( e = E -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) ) |
| 28 | 27 | adantl | |- ( ( g = G /\ v = S ) -> ( e = E -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) ) |
| 29 | 17 28 | sylbid | |- ( ( g = G /\ v = S ) -> ( e = ( iEdg ` g ) -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) ) |
| 30 | 29 | imp | |- ( ( ( g = G /\ v = S ) /\ e = ( iEdg ` g ) ) -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| 31 | 13 30 | csbied | |- ( ( g = G /\ v = S ) -> [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| 32 | 12 31 | opeq12d | |- ( ( g = G /\ v = S ) -> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
| 33 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 34 | 33 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 35 | 34 | pweqd | |- ( g = G -> ~P ( Vtx ` g ) = ~P V ) |
| 36 | df-isubgr | |- ISubGr = ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |
|
| 37 | 32 35 36 | ovmpox | |- ( ( G e. _V /\ S e. ~P V /\ <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. e. _V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
| 38 | 4 9 11 37 | syl3anc | |- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |