This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito2.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| isinito2.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | ||
| Assertion | isinito3 | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito2.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | isinito2.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | |
| 3 | relup | ⊢ Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) | |
| 4 | 1 2 | isinito2 | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 5 | 4 | biimpi | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 6 | releldm | ⊢ ( ( Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∧ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) → 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) |
| 8 | releldmb | ⊢ ( Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) → ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ↔ ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) ) | |
| 9 | 3 8 | ax-mp | ⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ↔ ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) |
| 10 | id | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) | |
| 11 | 10 | up1st2nd | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) |
| 12 | 1 | setc1ohomfval | ⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 1 ) |
| 13 | 11 12 | uprcl5 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) ) |
| 14 | eqid | ⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) | |
| 15 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 16 | 1 15 | eqeltri | ⊢ 1 ∈ TermCat |
| 17 | 16 | a1i | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 1 ∈ TermCat ) |
| 18 | 17 | termccd | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 1 ∈ Cat ) |
| 19 | 11 | uprcl2 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 20 | 19 | funcrcl2 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐶 ∈ Cat ) |
| 21 | 1 | setc1obas | ⊢ 1o = ( Base ‘ 1 ) |
| 22 | 11 21 | uprcl3 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ∅ ∈ 1o ) |
| 23 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 24 | 11 23 | uprcl4 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 25 | 14 18 20 21 22 2 23 24 | diag11 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) = ∅ ) |
| 26 | 25 | oveq2d | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 27 | 1oex | ⊢ 1o ∈ V | |
| 28 | 27 | ovsn2 | ⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = 1o |
| 29 | 26 28 | eqtrdi | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = 1o ) |
| 30 | 13 29 | eleqtrd | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝑦 ∈ 1o ) |
| 31 | el1o | ⊢ ( 𝑦 ∈ 1o ↔ 𝑦 = ∅ ) | |
| 32 | 30 31 | sylib | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝑦 = ∅ ) |
| 33 | 10 32 | breqtrd | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 34 | 33 4 | sylibr | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 35 | 34 | exlimiv | ⊢ ( ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 36 | 9 35 | sylbi | ⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 37 | 7 36 | impbii | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) |