This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito4.1 | ⊢ ( 𝜑 → 1 ∈ TermCat ) | |
| isinito4.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 1 ) ) | ||
| isinito4a.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ 𝑋 ) | ||
| Assertion | isinito4a | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito4.1 | ⊢ ( 𝜑 → 1 ∈ TermCat ) | |
| 2 | isinito4.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 1 ) ) | |
| 3 | isinito4a.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ 𝑋 ) | |
| 4 | initorcl | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 5 | 4 | anim2i | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝜑 ∧ 𝐶 ∈ Cat ) ) |
| 6 | uobrcl | ⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) → ( 𝐶 ∈ Cat ∧ 1 ∈ Cat ) ) | |
| 7 | 6 | simpld | ⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) → 𝐶 ∈ Cat ) |
| 8 | 7 | anim2i | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) → ( 𝜑 ∧ 𝐶 ∈ Cat ) ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 1 ∈ TermCat ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝑋 ∈ ( Base ‘ 1 ) ) |
| 11 | eqid | ⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) | |
| 12 | 9 | termccd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 1 ∈ Cat ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) | |
| 14 | eqid | ⊢ ( Base ‘ 1 ) = ( Base ‘ 1 ) | |
| 15 | 11 12 13 14 10 3 | diag1cl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐹 ∈ ( 𝐶 Func 1 ) ) |
| 16 | 9 10 15 | isinito4 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |
| 17 | 5 8 16 | pm5.21nd | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |