This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a Hilbert lattice", which is: is orthomodular ( K e. OML ), complete ( K e. CLat ), atomic and satisfies the exchange (or covering) property ( K e. CvLat ), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ishlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ishlat.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| ishlat.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| ishlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| ishlat.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| ishlat.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| ishlat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | ishlat1 | ⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ishlat.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | ishlat.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | ishlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 5 | ishlat.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 6 | ishlat.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 7 | ishlat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 9 | 8 7 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 10 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 12 | 11 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ↔ 𝑧 ≤ ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) | |
| 14 | 13 4 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 15 | 14 | oveqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) = ( 𝑥 ∨ 𝑦 ) ) |
| 16 | 15 | breq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑧 ≤ ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ↔ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
| 17 | 12 16 | bitrd | ⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ↔ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
| 18 | 17 | 3anbi3d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) |
| 19 | 9 18 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) ) |
| 21 | 9 20 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) ) |
| 22 | 9 21 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) ) |
| 23 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 24 | 23 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 25 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( lt ‘ 𝑘 ) = ( lt ‘ 𝐾 ) ) | |
| 26 | 25 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( lt ‘ 𝑘 ) = < ) |
| 27 | 26 | breqd | ⊢ ( 𝑘 = 𝐾 → ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ↔ ( 0. ‘ 𝑘 ) < 𝑥 ) ) |
| 28 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( 0. ‘ 𝑘 ) = ( 0. ‘ 𝐾 ) ) | |
| 29 | 28 5 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( 0. ‘ 𝑘 ) = 0 ) |
| 30 | 29 | breq1d | ⊢ ( 𝑘 = 𝐾 → ( ( 0. ‘ 𝑘 ) < 𝑥 ↔ 0 < 𝑥 ) ) |
| 31 | 27 30 | bitrd | ⊢ ( 𝑘 = 𝐾 → ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ↔ 0 < 𝑥 ) ) |
| 32 | 26 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( lt ‘ 𝑘 ) 𝑦 ↔ 𝑥 < 𝑦 ) ) |
| 33 | 31 32 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ↔ ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ) ) |
| 34 | 26 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ↔ 𝑦 < 𝑧 ) ) |
| 35 | 26 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ↔ 𝑧 < ( 1. ‘ 𝑘 ) ) ) |
| 36 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = ( 1. ‘ 𝐾 ) ) | |
| 37 | 36 6 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = 1 ) |
| 38 | 37 | breq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑧 < ( 1. ‘ 𝑘 ) ↔ 𝑧 < 1 ) ) |
| 39 | 35 38 | bitrd | ⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ↔ 𝑧 < 1 ) ) |
| 40 | 34 39 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ↔ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) |
| 41 | 33 40 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
| 42 | 24 41 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
| 43 | 24 42 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
| 44 | 24 43 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑘 ) ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
| 45 | 22 44 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ∀ 𝑥 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑘 ) ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
| 46 | df-hlat | ⊢ HL = { 𝑘 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∣ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑘 ) ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ) } | |
| 47 | 45 46 | elrab2 | ⊢ ( 𝐾 ∈ HL ↔ ( 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
| 48 | elin | ⊢ ( 𝐾 ∈ ( OML ∩ CLat ) ↔ ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ) ) | |
| 49 | 48 | anbi1i | ⊢ ( ( 𝐾 ∈ ( OML ∩ CLat ) ∧ 𝐾 ∈ CvLat ) ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ) ∧ 𝐾 ∈ CvLat ) ) |
| 50 | elin | ⊢ ( 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ↔ ( 𝐾 ∈ ( OML ∩ CLat ) ∧ 𝐾 ∈ CvLat ) ) | |
| 51 | df-3an | ⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ) ∧ 𝐾 ∈ CvLat ) ) | |
| 52 | 49 50 51 | 3bitr4ri | ⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ↔ 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ) |
| 53 | 52 | anbi1i | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ↔ ( 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
| 54 | 47 53 | bitr4i | ⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |