This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a Hilbert lattice", which is: is orthomodular ( K e. OML ), complete ( K e. CLat ), atomic and satisfies the exchange (or covering) property ( K e. CvLat ), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ishlat.b | |- B = ( Base ` K ) |
|
| ishlat.l | |- .<_ = ( le ` K ) |
||
| ishlat.s | |- .< = ( lt ` K ) |
||
| ishlat.j | |- .\/ = ( join ` K ) |
||
| ishlat.z | |- .0. = ( 0. ` K ) |
||
| ishlat.u | |- .1. = ( 1. ` K ) |
||
| ishlat.a | |- A = ( Atoms ` K ) |
||
| Assertion | ishlat1 | |- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlat.b | |- B = ( Base ` K ) |
|
| 2 | ishlat.l | |- .<_ = ( le ` K ) |
|
| 3 | ishlat.s | |- .< = ( lt ` K ) |
|
| 4 | ishlat.j | |- .\/ = ( join ` K ) |
|
| 5 | ishlat.z | |- .0. = ( 0. ` K ) |
|
| 6 | ishlat.u | |- .1. = ( 1. ` K ) |
|
| 7 | ishlat.a | |- A = ( Atoms ` K ) |
|
| 8 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 9 | 8 7 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 10 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( k = K -> ( le ` k ) = .<_ ) |
| 12 | 11 | breqd | |- ( k = K -> ( z ( le ` k ) ( x ( join ` k ) y ) <-> z .<_ ( x ( join ` k ) y ) ) ) |
| 13 | fveq2 | |- ( k = K -> ( join ` k ) = ( join ` K ) ) |
|
| 14 | 13 4 | eqtr4di | |- ( k = K -> ( join ` k ) = .\/ ) |
| 15 | 14 | oveqd | |- ( k = K -> ( x ( join ` k ) y ) = ( x .\/ y ) ) |
| 16 | 15 | breq2d | |- ( k = K -> ( z .<_ ( x ( join ` k ) y ) <-> z .<_ ( x .\/ y ) ) ) |
| 17 | 12 16 | bitrd | |- ( k = K -> ( z ( le ` k ) ( x ( join ` k ) y ) <-> z .<_ ( x .\/ y ) ) ) |
| 18 | 17 | 3anbi3d | |- ( k = K -> ( ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) <-> ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) |
| 19 | 9 18 | rexeqbidv | |- ( k = K -> ( E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) <-> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) |
| 20 | 19 | imbi2d | |- ( k = K -> ( ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) <-> ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) ) |
| 21 | 9 20 | raleqbidv | |- ( k = K -> ( A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) <-> A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) ) |
| 22 | 9 21 | raleqbidv | |- ( k = K -> ( A. x e. ( Atoms ` k ) A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) <-> A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) ) |
| 23 | fveq2 | |- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
|
| 24 | 23 1 | eqtr4di | |- ( k = K -> ( Base ` k ) = B ) |
| 25 | fveq2 | |- ( k = K -> ( lt ` k ) = ( lt ` K ) ) |
|
| 26 | 25 3 | eqtr4di | |- ( k = K -> ( lt ` k ) = .< ) |
| 27 | 26 | breqd | |- ( k = K -> ( ( 0. ` k ) ( lt ` k ) x <-> ( 0. ` k ) .< x ) ) |
| 28 | fveq2 | |- ( k = K -> ( 0. ` k ) = ( 0. ` K ) ) |
|
| 29 | 28 5 | eqtr4di | |- ( k = K -> ( 0. ` k ) = .0. ) |
| 30 | 29 | breq1d | |- ( k = K -> ( ( 0. ` k ) .< x <-> .0. .< x ) ) |
| 31 | 27 30 | bitrd | |- ( k = K -> ( ( 0. ` k ) ( lt ` k ) x <-> .0. .< x ) ) |
| 32 | 26 | breqd | |- ( k = K -> ( x ( lt ` k ) y <-> x .< y ) ) |
| 33 | 31 32 | anbi12d | |- ( k = K -> ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) <-> ( .0. .< x /\ x .< y ) ) ) |
| 34 | 26 | breqd | |- ( k = K -> ( y ( lt ` k ) z <-> y .< z ) ) |
| 35 | 26 | breqd | |- ( k = K -> ( z ( lt ` k ) ( 1. ` k ) <-> z .< ( 1. ` k ) ) ) |
| 36 | fveq2 | |- ( k = K -> ( 1. ` k ) = ( 1. ` K ) ) |
|
| 37 | 36 6 | eqtr4di | |- ( k = K -> ( 1. ` k ) = .1. ) |
| 38 | 37 | breq2d | |- ( k = K -> ( z .< ( 1. ` k ) <-> z .< .1. ) ) |
| 39 | 35 38 | bitrd | |- ( k = K -> ( z ( lt ` k ) ( 1. ` k ) <-> z .< .1. ) ) |
| 40 | 34 39 | anbi12d | |- ( k = K -> ( ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) <-> ( y .< z /\ z .< .1. ) ) ) |
| 41 | 33 40 | anbi12d | |- ( k = K -> ( ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
| 42 | 24 41 | rexeqbidv | |- ( k = K -> ( E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
| 43 | 24 42 | rexeqbidv | |- ( k = K -> ( E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
| 44 | 24 43 | rexeqbidv | |- ( k = K -> ( E. x e. ( Base ` k ) E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
| 45 | 22 44 | anbi12d | |- ( k = K -> ( ( A. x e. ( Atoms ` k ) A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) /\ E. x e. ( Base ` k ) E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) ) <-> ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
| 46 | df-hlat | |- HL = { k e. ( ( OML i^i CLat ) i^i CvLat ) | ( A. x e. ( Atoms ` k ) A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) /\ E. x e. ( Base ` k ) E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) ) } |
|
| 47 | 45 46 | elrab2 | |- ( K e. HL <-> ( K e. ( ( OML i^i CLat ) i^i CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
| 48 | elin | |- ( K e. ( OML i^i CLat ) <-> ( K e. OML /\ K e. CLat ) ) |
|
| 49 | 48 | anbi1i | |- ( ( K e. ( OML i^i CLat ) /\ K e. CvLat ) <-> ( ( K e. OML /\ K e. CLat ) /\ K e. CvLat ) ) |
| 50 | elin | |- ( K e. ( ( OML i^i CLat ) i^i CvLat ) <-> ( K e. ( OML i^i CLat ) /\ K e. CvLat ) ) |
|
| 51 | df-3an | |- ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) <-> ( ( K e. OML /\ K e. CLat ) /\ K e. CvLat ) ) |
|
| 52 | 49 50 51 | 3bitr4ri | |- ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) <-> K e. ( ( OML i^i CLat ) i^i CvLat ) ) |
| 53 | 52 | anbi1i | |- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) <-> ( K e. ( ( OML i^i CLat ) i^i CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
| 54 | 47 53 | bitr4i | |- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |