This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of Hilbert lattices, which are complete, atomic lattices satisfying the superposition principle and minimum height. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hlat | ⊢ HL = { 𝑙 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∣ ( ∀ 𝑎 ∈ ( Atoms ‘ 𝑙 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑙 ) ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) ∧ ∃ 𝑎 ∈ ( Base ‘ 𝑙 ) ∃ 𝑏 ∈ ( Base ‘ 𝑙 ) ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chlt | ⊢ HL | |
| 1 | vl | ⊢ 𝑙 | |
| 2 | coml | ⊢ OML | |
| 3 | ccla | ⊢ CLat | |
| 4 | 2 3 | cin | ⊢ ( OML ∩ CLat ) |
| 5 | clc | ⊢ CvLat | |
| 6 | 4 5 | cin | ⊢ ( ( OML ∩ CLat ) ∩ CvLat ) |
| 7 | va | ⊢ 𝑎 | |
| 8 | catm | ⊢ Atoms | |
| 9 | 1 | cv | ⊢ 𝑙 |
| 10 | 9 8 | cfv | ⊢ ( Atoms ‘ 𝑙 ) |
| 11 | vb | ⊢ 𝑏 | |
| 12 | 7 | cv | ⊢ 𝑎 |
| 13 | 11 | cv | ⊢ 𝑏 |
| 14 | 12 13 | wne | ⊢ 𝑎 ≠ 𝑏 |
| 15 | vc | ⊢ 𝑐 | |
| 16 | 15 | cv | ⊢ 𝑐 |
| 17 | 16 12 | wne | ⊢ 𝑐 ≠ 𝑎 |
| 18 | 16 13 | wne | ⊢ 𝑐 ≠ 𝑏 |
| 19 | cple | ⊢ le | |
| 20 | 9 19 | cfv | ⊢ ( le ‘ 𝑙 ) |
| 21 | cjn | ⊢ join | |
| 22 | 9 21 | cfv | ⊢ ( join ‘ 𝑙 ) |
| 23 | 12 13 22 | co | ⊢ ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) |
| 24 | 16 23 20 | wbr | ⊢ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) |
| 25 | 17 18 24 | w3a | ⊢ ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) |
| 26 | 25 15 10 | wrex | ⊢ ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) |
| 27 | 14 26 | wi | ⊢ ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) |
| 28 | 27 11 10 | wral | ⊢ ∀ 𝑏 ∈ ( Atoms ‘ 𝑙 ) ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) |
| 29 | 28 7 10 | wral | ⊢ ∀ 𝑎 ∈ ( Atoms ‘ 𝑙 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑙 ) ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) |
| 30 | cbs | ⊢ Base | |
| 31 | 9 30 | cfv | ⊢ ( Base ‘ 𝑙 ) |
| 32 | cp0 | ⊢ 0. | |
| 33 | 9 32 | cfv | ⊢ ( 0. ‘ 𝑙 ) |
| 34 | cplt | ⊢ lt | |
| 35 | 9 34 | cfv | ⊢ ( lt ‘ 𝑙 ) |
| 36 | 33 12 35 | wbr | ⊢ ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 |
| 37 | 12 13 35 | wbr | ⊢ 𝑎 ( lt ‘ 𝑙 ) 𝑏 |
| 38 | 36 37 | wa | ⊢ ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) |
| 39 | 13 16 35 | wbr | ⊢ 𝑏 ( lt ‘ 𝑙 ) 𝑐 |
| 40 | cp1 | ⊢ 1. | |
| 41 | 9 40 | cfv | ⊢ ( 1. ‘ 𝑙 ) |
| 42 | 16 41 35 | wbr | ⊢ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) |
| 43 | 39 42 | wa | ⊢ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) |
| 44 | 38 43 | wa | ⊢ ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) |
| 45 | 44 15 31 | wrex | ⊢ ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) |
| 46 | 45 11 31 | wrex | ⊢ ∃ 𝑏 ∈ ( Base ‘ 𝑙 ) ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) |
| 47 | 46 7 31 | wrex | ⊢ ∃ 𝑎 ∈ ( Base ‘ 𝑙 ) ∃ 𝑏 ∈ ( Base ‘ 𝑙 ) ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) |
| 48 | 29 47 | wa | ⊢ ( ∀ 𝑎 ∈ ( Atoms ‘ 𝑙 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑙 ) ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) ∧ ∃ 𝑎 ∈ ( Base ‘ 𝑙 ) ∃ 𝑏 ∈ ( Base ‘ 𝑙 ) ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) ) |
| 49 | 48 1 6 | crab | ⊢ { 𝑙 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∣ ( ∀ 𝑎 ∈ ( Atoms ‘ 𝑙 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑙 ) ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) ∧ ∃ 𝑎 ∈ ( Base ‘ 𝑙 ) ∃ 𝑏 ∈ ( Base ‘ 𝑙 ) ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) ) } |
| 50 | 0 49 | wceq | ⊢ HL = { 𝑙 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∣ ( ∀ 𝑎 ∈ ( Atoms ‘ 𝑙 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑙 ) ( 𝑎 ≠ 𝑏 → ∃ 𝑐 ∈ ( Atoms ‘ 𝑙 ) ( 𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐 ( le ‘ 𝑙 ) ( 𝑎 ( join ‘ 𝑙 ) 𝑏 ) ) ) ∧ ∃ 𝑎 ∈ ( Base ‘ 𝑙 ) ∃ 𝑏 ∈ ( Base ‘ 𝑙 ) ∃ 𝑐 ∈ ( Base ‘ 𝑙 ) ( ( ( 0. ‘ 𝑙 ) ( lt ‘ 𝑙 ) 𝑎 ∧ 𝑎 ( lt ‘ 𝑙 ) 𝑏 ) ∧ ( 𝑏 ( lt ‘ 𝑙 ) 𝑐 ∧ 𝑐 ( lt ‘ 𝑙 ) ( 1. ‘ 𝑙 ) ) ) ) } |