This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is finer than A " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | |- X = U. A |
|
| isfne.2 | |- Y = U. B |
||
| Assertion | isfne4 | |- ( A Fne B <-> ( X = Y /\ A C_ ( topGen ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | |- X = U. A |
|
| 2 | isfne.2 | |- Y = U. B |
|
| 3 | fnerel | |- Rel Fne |
|
| 4 | 3 | brrelex2i | |- ( A Fne B -> B e. _V ) |
| 5 | simpl | |- ( ( X = Y /\ A C_ ( topGen ` B ) ) -> X = Y ) |
|
| 6 | 5 1 2 | 3eqtr3g | |- ( ( X = Y /\ A C_ ( topGen ` B ) ) -> U. A = U. B ) |
| 7 | fvex | |- ( topGen ` B ) e. _V |
|
| 8 | 7 | ssex | |- ( A C_ ( topGen ` B ) -> A e. _V ) |
| 9 | 8 | adantl | |- ( ( X = Y /\ A C_ ( topGen ` B ) ) -> A e. _V ) |
| 10 | 9 | uniexd | |- ( ( X = Y /\ A C_ ( topGen ` B ) ) -> U. A e. _V ) |
| 11 | 6 10 | eqeltrrd | |- ( ( X = Y /\ A C_ ( topGen ` B ) ) -> U. B e. _V ) |
| 12 | uniexb | |- ( B e. _V <-> U. B e. _V ) |
|
| 13 | 11 12 | sylibr | |- ( ( X = Y /\ A C_ ( topGen ` B ) ) -> B e. _V ) |
| 14 | 1 2 | isfne | |- ( B e. _V -> ( A Fne B <-> ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) ) |
| 15 | dfss3 | |- ( A C_ ( topGen ` B ) <-> A. x e. A x e. ( topGen ` B ) ) |
|
| 16 | eltg | |- ( B e. _V -> ( x e. ( topGen ` B ) <-> x C_ U. ( B i^i ~P x ) ) ) |
|
| 17 | 16 | ralbidv | |- ( B e. _V -> ( A. x e. A x e. ( topGen ` B ) <-> A. x e. A x C_ U. ( B i^i ~P x ) ) ) |
| 18 | 15 17 | bitrid | |- ( B e. _V -> ( A C_ ( topGen ` B ) <-> A. x e. A x C_ U. ( B i^i ~P x ) ) ) |
| 19 | 18 | anbi2d | |- ( B e. _V -> ( ( X = Y /\ A C_ ( topGen ` B ) ) <-> ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) ) |
| 20 | 14 19 | bitr4d | |- ( B e. _V -> ( A Fne B <-> ( X = Y /\ A C_ ( topGen ` B ) ) ) ) |
| 21 | 4 13 20 | pm5.21nii | |- ( A Fne B <-> ( X = Y /\ A C_ ( topGen ` B ) ) ) |