This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | isfne4b | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | 1 2 | isfne4 | ⊢ ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| 4 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) | |
| 5 | 4 1 2 | 3eqtr3g | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 = ∪ 𝐵 ) |
| 6 | uniexg | ⊢ ( 𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ∪ 𝐵 ∈ V ) |
| 8 | 5 7 | eqeltrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 ∈ V ) |
| 9 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ V ) |
| 11 | simpl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → 𝐵 ∈ 𝑉 ) | |
| 12 | tgss3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌 ) → ( ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| 14 | 13 | pm5.32da | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑋 = 𝑌 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) ) |
| 15 | 3 14 | bitr4id | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐵 ) ) ) ) |