This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-orderable set is VII-finite iff it is I-finite. Thus, even without choice, on the class of well-orderable sets all eight definitions of finite set coincide. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin71num | ⊢ ( 𝐴 ∈ dom card → ( 𝐴 ∈ FinVII ↔ 𝐴 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin7-2 | ⊢ ( 𝐴 ∈ dom card → ( 𝐴 ∈ FinVII ↔ ( 𝐴 ∈ dom card → 𝐴 ∈ Fin ) ) ) | |
| 2 | biimt | ⊢ ( 𝐴 ∈ dom card → ( 𝐴 ∈ Fin ↔ ( 𝐴 ∈ dom card → 𝐴 ∈ Fin ) ) ) | |
| 3 | 1 2 | bitr4d | ⊢ ( 𝐴 ∈ dom card → ( 𝐴 ∈ FinVII ↔ 𝐴 ∈ Fin ) ) |