This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of isfin3-2 . (Contributed by Mario Carneiro, 3-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin32i | ⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼* 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3 | ⊢ ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV ) | |
| 2 | isfin4-2 | ⊢ ( 𝒫 𝐴 ∈ FinIV → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) | |
| 3 | 2 | ibi | ⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴 ) |
| 4 | relwdom | ⊢ Rel ≼* | |
| 5 | 4 | brrelex1i | ⊢ ( ω ≼* 𝐴 → ω ∈ V ) |
| 6 | canth2g | ⊢ ( ω ∈ V → ω ≺ 𝒫 ω ) | |
| 7 | sdomdom | ⊢ ( ω ≺ 𝒫 ω → ω ≼ 𝒫 ω ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ω ≼* 𝐴 → ω ≼ 𝒫 ω ) |
| 9 | wdompwdom | ⊢ ( ω ≼* 𝐴 → 𝒫 ω ≼ 𝒫 𝐴 ) | |
| 10 | domtr | ⊢ ( ( ω ≼ 𝒫 ω ∧ 𝒫 ω ≼ 𝒫 𝐴 ) → ω ≼ 𝒫 𝐴 ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ω ≼* 𝐴 → ω ≼ 𝒫 𝐴 ) |
| 12 | 3 11 | nsyl | ⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼* 𝐴 ) |
| 13 | 1 12 | sylbi | ⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼* 𝐴 ) |