This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfild . (Contributed by Mario Carneiro, 1-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfild.1 | |- ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) |
|
| isfild.2 | |- ( ph -> A e. V ) |
||
| Assertion | isfildlem | |- ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfild.1 | |- ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) |
|
| 2 | isfild.2 | |- ( ph -> A e. V ) |
|
| 3 | elex | |- ( B e. F -> B e. _V ) |
|
| 4 | 3 | a1i | |- ( ph -> ( B e. F -> B e. _V ) ) |
| 5 | ssexg | |- ( ( B C_ A /\ A e. V ) -> B e. _V ) |
|
| 6 | 5 | expcom | |- ( A e. V -> ( B C_ A -> B e. _V ) ) |
| 7 | 2 6 | syl | |- ( ph -> ( B C_ A -> B e. _V ) ) |
| 8 | 7 | adantrd | |- ( ph -> ( ( B C_ A /\ [. B / x ]. ps ) -> B e. _V ) ) |
| 9 | eleq1 | |- ( y = B -> ( y e. F <-> B e. F ) ) |
|
| 10 | sseq1 | |- ( y = B -> ( y C_ A <-> B C_ A ) ) |
|
| 11 | dfsbcq | |- ( y = B -> ( [. y / x ]. ps <-> [. B / x ]. ps ) ) |
|
| 12 | 10 11 | anbi12d | |- ( y = B -> ( ( y C_ A /\ [. y / x ]. ps ) <-> ( B C_ A /\ [. B / x ]. ps ) ) ) |
| 13 | 9 12 | bibi12d | |- ( y = B -> ( ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) <-> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) |
| 14 | 13 | imbi2d | |- ( y = B -> ( ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) <-> ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) ) |
| 15 | nfv | |- F/ x ph |
|
| 16 | nfv | |- F/ x y e. F |
|
| 17 | nfv | |- F/ x y C_ A |
|
| 18 | nfsbc1v | |- F/ x [. y / x ]. ps |
|
| 19 | 17 18 | nfan | |- F/ x ( y C_ A /\ [. y / x ]. ps ) |
| 20 | 16 19 | nfbi | |- F/ x ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) |
| 21 | 15 20 | nfim | |- F/ x ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 22 | eleq1 | |- ( x = y -> ( x e. F <-> y e. F ) ) |
|
| 23 | sseq1 | |- ( x = y -> ( x C_ A <-> y C_ A ) ) |
|
| 24 | sbceq1a | |- ( x = y -> ( ps <-> [. y / x ]. ps ) ) |
|
| 25 | 23 24 | anbi12d | |- ( x = y -> ( ( x C_ A /\ ps ) <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 26 | 22 25 | bibi12d | |- ( x = y -> ( ( x e. F <-> ( x C_ A /\ ps ) ) <-> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) ) |
| 27 | 26 | imbi2d | |- ( x = y -> ( ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) <-> ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) ) ) |
| 28 | 21 27 1 | chvarfv | |- ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 29 | 14 28 | vtoclg | |- ( B e. _V -> ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) |
| 30 | 29 | com12 | |- ( ph -> ( B e. _V -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) |
| 31 | 4 8 30 | pm5.21ndd | |- ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) |