This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isf32lem40.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| Assertion | isf32lem12 | ⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem40.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 2 | elmapi | ⊢ ( 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) → 𝑓 : ω ⟶ 𝒫 𝐺 ) | |
| 3 | isf32lem11 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓 ) ) → ω ≼* 𝐺 ) | |
| 4 | 3 | expcom | ⊢ ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓 ) → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓 ) → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
| 6 | 5 | impancom | ⊢ ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ∧ 𝐺 ∈ 𝑉 ) → ( ¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺 ) ) |
| 7 | 6 | con1d | ⊢ ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ∧ 𝐺 ∈ 𝑉 ) → ( ¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 8 | 7 | exp31 | ⊢ ( 𝑓 : ω ⟶ 𝒫 𝐺 → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) ) |
| 9 | 2 8 | syl | ⊢ ( 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) ) |
| 10 | 9 | com4t | ⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ( 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) ) |
| 11 | 10 | ralrimdv | ⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ∀ 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 12 | 1 | isfin3ds | ⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 13 | 11 12 | sylibrd | ⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹 ) ) |