This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | ||
| isf32lem.e | ⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) | ||
| isf32lem.f | ⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) | ||
| isf32lem.g | ⊢ 𝐿 = ( 𝑡 ∈ 𝐺 ↦ ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) | ||
| Assertion | isf32lem10 | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | |
| 5 | isf32lem.e | ⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) | |
| 6 | isf32lem.f | ⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) | |
| 7 | isf32lem.g | ⊢ 𝐿 = ( 𝑡 ∈ 𝐺 ↦ ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | isf32lem9 | ⊢ ( 𝜑 → 𝐿 : 𝐺 –onto→ ω ) |
| 9 | fof | ⊢ ( 𝐿 : 𝐺 –onto→ ω → 𝐿 : 𝐺 ⟶ ω ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝐿 : 𝐺 ⟶ ω ) |
| 11 | fex | ⊢ ( ( 𝐿 : 𝐺 ⟶ ω ∧ 𝐺 ∈ 𝑉 ) → 𝐿 ∈ V ) | |
| 12 | 10 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝑉 ) → 𝐿 ∈ V ) |
| 13 | 12 | ex | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑉 → 𝐿 ∈ V ) ) |
| 14 | fowdom | ⊢ ( ( 𝐿 ∈ V ∧ 𝐿 : 𝐺 –onto→ ω ) → ω ≼* 𝐺 ) | |
| 15 | 14 | expcom | ⊢ ( 𝐿 : 𝐺 –onto→ ω → ( 𝐿 ∈ V → ω ≼* 𝐺 ) ) |
| 16 | 8 13 15 | sylsyld | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |