This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Remove hypotheses from isf32lem10 . (Contributed by Stefan O'Rear, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isf32lem11 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) ) → ω ≼* 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | suceq | ⊢ ( 𝑏 = 𝑐 → suc 𝑏 = suc 𝑐 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ suc 𝑏 ) = ( 𝐹 ‘ suc 𝑐 ) ) |
| 4 | fveq2 | ⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑐 ) ) | |
| 5 | 3 4 | sseq12d | ⊢ ( 𝑏 = 𝑐 → ( ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 6 | 5 | cbvralvw | ⊢ ( ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 7 | 6 | biimpi | ⊢ ( ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) → ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 9 | simp3 | ⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 10 | suceq | ⊢ ( 𝑒 = 𝑑 → suc 𝑒 = suc 𝑑 ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑒 = 𝑑 → ( 𝐹 ‘ suc 𝑒 ) = ( 𝐹 ‘ suc 𝑑 ) ) |
| 12 | fveq2 | ⊢ ( 𝑒 = 𝑑 → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑑 ) ) | |
| 13 | 11 12 | psseq12d | ⊢ ( 𝑒 = 𝑑 → ( ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) ↔ ( 𝐹 ‘ suc 𝑑 ) ⊊ ( 𝐹 ‘ 𝑑 ) ) ) |
| 14 | 13 | cbvrabv | ⊢ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } = { 𝑑 ∈ ω ∣ ( 𝐹 ‘ suc 𝑑 ) ⊊ ( 𝐹 ‘ 𝑑 ) } |
| 15 | eqid | ⊢ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) = ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) | |
| 16 | eqid | ⊢ ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) = ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) | |
| 17 | eqid | ⊢ ( 𝑘 ∈ 𝐺 ↦ ( ℩ 𝑙 ( 𝑙 ∈ ω ∧ 𝑘 ∈ ( ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) ‘ 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝐺 ↦ ( ℩ 𝑙 ( 𝑙 ∈ ω ∧ 𝑘 ∈ ( ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) ‘ 𝑙 ) ) ) ) | |
| 18 | 1 8 9 14 15 16 17 | isf32lem10 | ⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
| 19 | 18 | impcom | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) ) → ω ≼* 𝐺 ) |